4.6 Article

Rosmarinic acid inhibits some metabolic enzymes including glutathione S-transferase, lactoperoxidase, acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase isoenzymes

Journal

JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY
Volume 31, Issue 6, Pages 1698-1702

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.3109/14756366.2015.1135914

Keywords

Acetylcholinesterase; butyrylcholinesterase; carbonic anhydrase; glutathione S-transferase; lactoperoxidase; rosmarinic acid

Funding

  1. Research Chairs Programme at King Saud University
  2. EU

Ask authors/readers for more resources

Rosmarinic acid (RA) is a natural polyphenol contained in many aromatic plants with promising biological activities. Carbonic anhydrases (CAs, EC 4.2.1.1) are widespread and intensively studied metalloenzymes present in higher vertebrates. Acetylcholinesterase (AChE, E.C. 3.1.1.7) is intimately associated with the normal neurotransmission by catalysing the hydrolysis of acetylcholine to acetate and choline and acts in combination with butyrylcholinesterase (BChE) to remove acetylcholine from the synaptic cleft. Lactoperoxidase (LPO) is an enzyme involved in fighting pathogenic microorganisms, whereas glutathione S-transferases (GSTs) are dimeric proteins present both in prokaryotic and in eukaryotic organisms and involved in cellular detoxification mechanisms. In the present study, the inhibition effects of rosmarinic acid on tumour-associated carbonic anhydrase IX and XII isoenzymes, AChE, BChE, LPO and GST enzymes were evaluated. Rosmarinic acid inhibited these enzymes with K(i)s in the range between micromolar to picomolar. The best inhibitory effect of rosmarinic acid was observed against both AChE and BChE.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available