4.6 Article

Patient-Specific Assays Based on Whole-Genome Sequencing Data to Measure Residual Disease in Children With Acute Lymphoblastic Leukemia: A Proof of Concept Study

Journal

FRONTIERS IN ONCOLOGY
Volume 12, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fonc.2022.899325

Keywords

acute lymphoblastic leukemia; liquid biopsy; disease monitoring; precision medicine; whole-genome sequencing; structural variation; technical feasibility; diagnostic performance

Categories

Funding

  1. Swedish Childhood Cancer Fund [TJ2018-0054, TJ2021-0125, KP2018-0009, TJ 2015-0047, PR 2017-0063, TJ2018-0012]
  2. Beves forskningsfond
  3. ALF/Region Stockholm [SLL20200306, SLL20180046]

Ask authors/readers for more resources

This study demonstrates that whole-genome sequencing of genetic information in children with ALL, combined with ddPCR quantification, can accurately assess MRD levels. In addition, cfDNA extracted from plasma and cerebrospinal fluid can provide valuable information about MRD and low-grade CNS involvement.
Risk-adapted treatment in acute lymphoblastic leukemia (ALL) relies on genetic information and measurable residual disease (MRD) monitoring. In this proof of concept study, DNA from diagnostic bone marrow (BM) of six children with ALL, without stratifying genetics or central nervous system (CNS) involvement, underwent whole-genome sequencing (WGS) to identify structural variants (SVs) in the leukemic blasts. Unique sequences generated by SVs were targeted with patient-specific droplet digital PCR (ddPCR) assays. Genomic DNA (gDNA) from BM and cell-free DNA (cfDNA) from plasma and cerebrospinal fluid (CSF) were analyzed longitudinally. WGS with 30x coverage enabled target identification in all cases. Limit of quantifiability (LoQ) and limit of detection (LoD) for the ddPCR assays (n = 15) were up to 10(-5) and 10(-6), respectively. All targets were readily detectable in a multiplexed ddPCR with minimal DNA input (1 ng of gDNA) at a 10(-1) dilution, and targets for half of the patients were also detectable at a 10(-2) dilution. The level of MRD in BM at end of induction and end of consolidation block 1 was in a comparable range between ddPCR and clinical routine methods for samples with detectable residual disease, although our approach consistently detected higher MRD values for patients with B-cell precursor ALL. Additionally, several samples with undetectable MRD by flow cytometry were MRD-positive by ddPCR. In plasma, the level of leukemic targets decreased in cfDNA over time following the MRD level detected in BM. cfDNA was successfully extracted from all diagnostic CSF samples (n = 6), and leukemic targets were detected in half of these. The results suggest that our approach to design molecular assays, together with ddPCR quantification, is a technically feasible option for accurate MRD quantification and that cfDNA may contribute valuable information regarding MRD and low-grade CNS involvement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available