4.6 Article

Fully exposed nickel clusters with electron-rich centers for high- performance electrocatalytic CO2 reduction to CO

Related references

Note: Only part of the references are listed.
Article Multidisciplinary Sciences

Complementary Operando Spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol

Xiaozhi Su et al.

Summary: This article investigates the activity and selectivity issues of copper-based materials in converting carbon dioxide into multi-carbon products, and reports a high-performance CO2RR catalyst. Through in-situ experiments and computational methods, the authors demonstrate the atomic structure-activity relationship of the catalyst and reveal the potential-dependent transformation of Cu-2-CuN3 clusters and the role of charge-asymmetric sites in efficient ethanol formation.

NATURE COMMUNICATIONS (2022)

Article Chemistry, Multidisciplinary

Efficient Hydrogen Evolution of Oxidized Ni-N3 Defective Sites for Alkaline Freshwater and Seawater Electrolysis

Wenjie Zang et al.

Summary: In the study, atomically dispersed Ni with triple nitrogen coordination (Ni-N-3) was shown to achieve efficient hydrogen evolution reaction (HER) performance in alkaline media. These catalysts exhibited overpotentials as low as 102 and 139 mV at 10 mA cm(-2) in alkaline freshwater and seawater electrolytes, respectively, outperforming previously reported results.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Fully Exposed Cluster Catalyst (FECC): Toward Rich Surface Sites and Full Atom Utilization Efficiency

Mi Peng et al.

Summary: Single-atom catalysts have attracted increasing attention in heterogeneous catalysis due to their unique electronic properties, but may have limited advantages for reactions that require multiple atomic metallic states or metal-metal bond surface sites. Fully exposed cluster catalysts, as a cross-dimensional extension to the concept of single-atom catalysts, provide diverse surface sites and offer the advantage of maximized atom utilization efficiency. This outlook summarizes recent advances in the design and characterization of cluster catalysts, along with potential challenges.

ACS CENTRAL SCIENCE (2021)

Article Energy & Fuels

Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolysers

B. Endrodi et al.

Summary: Precipitates that form in the cathode of continuous-flow CO2 electrolysers hinder their long-term operation, but the alkali metals they are formed from actually boost activity. Researchers address this dichotomy by periodically infusing the cathode with alkaline cations, enabling the electrolyser to operate stably and efficiently for extended periods.

NATURE ENERGY (2021)

Editorial Material Chemistry, Physical

Address the alkalinity problem'' in CO2 electrolysis with catalyst design and translation

Chubai Chen et al.

JOULE (2021)

Article Chemistry, Multidisciplinary

Sulfur-Dopant-Promoted Electroreduction of CO2 over Coordinatively Unsaturated Ni-N-2 Moieties

Chen Jia et al.

Summary: Introducing alien sulfur atoms to tune the local electronic density of unsaturated NiN2 species enhances the efficiency of electrochemical CO2-to-CO conversion. The sulfur dopants improve CO selectivity and activity, reducing energy barriers for the electroreduction of CO2 to CO. This leads to a high CO Faradaic efficiency and large CO current density in H-cell measurements.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Materials Science, Multidisciplinary

Spatial Sites Separation Strategy to Fabricate Atomically Isolated Nickel Catalysts for Efficient CO2 Electroreduction

Qiao Wu et al.

Summary: This study presents a method for preparing highly efficient CO2 electroreduction catalysts using a spatial sites separation strategy. The catalyst with fully atomically isolated metal active sites was successfully achieved, showing high activity in converting CO2 to CO with high Faradaic efficiency and turnover frequency.

ACS MATERIALS LETTERS (2021)

Article Chemistry, Multidisciplinary

Controlled Synthesis of a Vacancy-Defect Single-Atom Catalyst for Boosting CO2 Electroreduction

Xin Rong et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Multidisciplinary Sciences

Electrochemical deposition as a universal route for fabricating single-atom catalysts

Zhirong Zhang et al.

NATURE COMMUNICATIONS (2020)

Article Chemistry, Physical

Activation of Ni Particles into Single Ni-N Atoms for Efficient Electrochemical Reduction of CO2

Qun Fan et al.

ADVANCED ENERGY MATERIALS (2020)

Article Chemistry, Multidisciplinary

Enhanced CO2 Electroreduction on Neighboring Zn/Co Monomers by Electronic Effect

Wenjin Zhu et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Nanoscience & Nanotechnology

Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation

Yu Xiong et al.

NATURE NANOTECHNOLOGY (2020)

Article Chemistry, Multidisciplinary

Negative Pressure Pyrolysis Induced Highly Accessible Single Sites Dispersed on 3D Graphene Frameworks for Enhanced Oxygen Reduction

Huang Zhou et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Multidisciplinary

Cation-Exchange Induced Precise Regulation of Single Copper Site Triggers Room-Temperature Oxidation of Benzene

Huang Zhou et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Review Chemistry, Physical

Supported Metal Clusters: Fabrication and Application in Heterogeneous Catalysis

Chunyang Dong et al.

ACS CATALYSIS (2020)

Article Chemistry, Physical

Iron clusters boosted performance in electrocatalytic carbon dioxide conversion

Dongchuang Wu et al.

JOURNAL OF MATERIALS CHEMISTRY A (2020)

Article Chemistry, Multidisciplinary

Ultrahigh-Loading Zinc Single-Atom Catalyst for Highly Efficient Oxygen Reduction in Both Acidic and Alkaline Media

Jia Li et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Chemistry, Multidisciplinary

Isolated Diatomic Ni-Fe Metal-Nitrogen Sites for Synergistic Electroreduction of CO2

Wenhao Ren et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Chemistry, Multidisciplinary

Bismuth Single Atoms Resulting from Transformation of Metal-Organic Frameworks and Their Use as Electrocatalysts for CO2 Reduction

Erhuan Zhang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Review Chemistry, Multidisciplinary

Homogeneously Catalyzed Electroreduction of Carbon Dioxide-Methods, Mechanisms, and Catalysts

Robert Francke et al.

CHEMICAL REVIEWS (2018)

Article Chemistry, Multidisciplinary

Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction

Chengcheng Yan et al.

ENERGY & ENVIRONMENTAL SCIENCE (2018)

Review Chemistry, Multidisciplinary

Constructing and controlling of highly dispersed metallic sites for catalysis

Guixia Zhao et al.

NANO TODAY (2018)

Article Chemistry, Multidisciplinary

Graphene Defects Trap Atomic Ni Species for Hydrogen and Oxygen Evolution Reactions

Longzhou Zhang et al.

Article Chemistry, Multidisciplinary

Selective and Efficient Reduction of Carbon Dioxide to Carbon Monoxide on Oxide-Derived Nanostructured Silver Electrocatalysts

Ming Ma et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2016)

Article Chemistry, Multidisciplinary

Achieving Selective and Efficient Electrocatalytic Activity for CO2 Reduction Using Immobilized Silver Nanoparticles

Cheonghee Kim et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2015)

Review Chemistry, Multidisciplinary

A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels

Jinli Qiao et al.

CHEMICAL SOCIETY REVIEWS (2014)

Article Chemistry, Multidisciplinary

Active and Selective Conversion of CO2 to CO on Ultrathin Au Nanowires

Wenlei Zhu et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2014)

Article Chemistry, Physical

A theoretical evaluation of possible transition metal electro-catalysts for N-2 reduction

Egill Skulason et al.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2012)

Article Chemistry, Physical

Semiempirical hybrid density functional with perturbative second-order correlation

S Grimme

JOURNAL OF CHEMICAL PHYSICS (2006)