4.5 Article

VHRShips: An Extensive Benchmark Dataset for Scalable Deep Learning-Based Ship Detection Applications

Journal

Publisher

MDPI
DOI: 10.3390/ijgi11080445

Keywords

deep learning; optical satellite image; ship classification; end-to-end approach; dataset

Ask authors/readers for more resources

This study introduces the VHRShips dataset, which is a unique and rich ship dataset that can improve the scalability of ship detection and mapping applications. A deep learning-based multi-stage approach called HieD is proposed for ship type classification. The results show that HieD outperforms other methods in localization, recognition, and identification stages.
The classification of maritime boats and ship targets using optical satellite imagery is a challenging subject. This research introduces a unique and rich ship dataset named Very High-Resolution Ships (VHRShips) from Google Earth images, which includes diverse ship types, different ship sizes, several inshore locations, and different data acquisition conditions to improve the scalability of ship detection and mapping applications. In addition, we proposed a deep learning-based multi-stage approach for ship type classification from very high resolution satellite images to evaluate the performance of the VHRShips dataset. Our Hierarchical Design (HieD) approach is an end-to-end structure that allows the optimization of the Detection, Localization, Recognition, and Identification (DLRI) stages, independently. We focused on sixteen parent ship classes for the DLR stages, and specifically considered eight child classes of the navy parent class at the identification stage. We used the Xception network in the DRI stages and implemented YOLOv4 for the localization stage. Individual optimization of each stage resulted in F1 scores of 99.17%, 94.20%, 84.08%, and 82.13% for detection, recognition, localization, and identification, respectively. The end-to-end implementation of our proposed approach resulted in F1 scores of 99.17%, 93.43%, 74.00%, and 57.05% for the same order. In comparison, end-to-end YOLOv4 yielded F1-scores of 99.17%, 86.59%, 68.87%, and 56.28% for DLRI, respectively. We achieved higher performance with HieD than YOLOv4 for localization, recognition, and identification stages, indicating the usability of the VHRShips dataset in different detection and classification models. In addition, the proposed method and dataset can be used as a benchmark for further studies to apply deep learning on large-scale geodata to boost GeoAI applications in the maritime domain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available