4.8 Review

Glycolysis in Innate Immune Cells Contributes to Autoimmunity

Journal

FRONTIERS IN IMMUNOLOGY
Volume 13, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fimmu.2022.920029

Keywords

autoimmune diseases; innate immune cells; immunometabolism; glycolysis; therapeutic target

Categories

Funding

  1. National Natural Science Foundation of China [62071011, 81788101]
  2. Chinese Academy of Medical Science Innovation Fund for Medical Sciences (CIFMS) [2021-1-I2M-017, 2021-1-I2M-047, 2021-1-I2M-040, 2021-1-I2M-016, 2021-1-I2M-026]
  3. Capital's Funds for Health Improvement and Research [2020-2-4019]
  4. Key Clinical Specialty Funding Project of Beijing

Ask authors/readers for more resources

Autoimmune diseases are characterized by connective tissue inflammation caused by abnormal autoantibodies. Current treatments for these diseases have side effects, and there is a need to study their pathogenesis to develop selective inhibitors for inflammatory signaling. Immune cells shift their metabolic profile from mitochondrial respiration to glycolysis in these diseases, which is critical to connective tissue inflammation. Glycolysis promotes disease progression by satisfying cellular functions. The impact of glycolysis on the pathophysiological processes of autoimmune diseases and potential therapeutic targets are discussed.
Autoimmune diseases (AIDs) refer to connective tissue inflammation caused by aberrant autoantibodies resulting from dysfunctional immune surveillance. Most of the current treatments for AIDs use non-selective immunosuppressive agents. Although these therapies successfully control the disease process, patients experience significant side effects, particularly an increased risk of infection. There is a great need to study the pathogenesis of AIDs to facilitate the development of selective inhibitors for inflammatory signaling to overcome the limitations of traditional therapies. Immune cells alter their predominant metabolic profile from mitochondrial respiration to glycolysis in AIDs. This metabolic reprogramming, known to occur in adaptive immune cells, i.e., B and T lymphocytes, is critical to the pathogenesis of connective tissue inflammation. At the cellular level, this metabolic switch involves multiple signaling molecules, including serine-threonine protein kinase, mammalian target of rapamycin, and phosphoinositide 3-kinase. Although glycolysis is less efficient than mitochondrial respiration in terms of ATP production, immune cells can promote disease progression by enhancing glycolysis to satisfy cellular functions. Recent studies have shown that active glycolytic metabolism may also account for the cellular physiology of innate immune cells in AIDs. However, the mechanism by which glycolysis affects innate immunity and participates in the pathogenesis of AIDs remains to be elucidated. Therefore, we reviewed the molecular mechanisms, including key enzymes, signaling pathways, and inflammatory factors, that could explain the relationship between glycolysis and the pro-inflammatory phenotype of innate immune cells such as neutrophils, macrophages, and dendritic cells. Additionally, we summarize the impact of glycolysis on the pathophysiological processes of AIDs, including systemic lupus erythematosus, rheumatoid arthritis, vasculitis, and ankylosing spondylitis, and discuss potential therapeutic targets. The discovery that immune cell metabolism characterized by glycolysis may regulate inflammation broadens the avenues for treating AIDs by modulating immune cell metabolism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available