4.5 Article

Experimental and Numerical Analysis of Prestrain on the Formability of Zn-Cu-Ti Alloy Zinc Sheet

Journal

METALS
Volume 12, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/met12071095

Keywords

MK-VPSC; forming limit diagram; prestrain; anisotropy; texture

Funding

  1. CONICET [PIP-CONICET 1964]

Ask authors/readers for more resources

The effect of bilinear strain paths on the forming limit curves (FLCs) of sheet metals was analyzed using both experimental measurements and numerical simulations. The MK-VPSC-SRE model was validated and the limitations of simulating texture development, flow stress, and forming limit curves were discussed.
The forming limit diagrams (FLDs) characterizing the formability of sheet metals are usually obtained by applying proportional loadings. Nevertheless, the industrial processes involve strain path changes that can modify the limit-strain values. In addition, for strongly anisotropic sheet metals such as the Zn-Cu-Ti zinc alloy, large differences in forming limit curves (FLCs) with respect to the sheet rolling direction are observed. In the present work, the analysis of the effect of bilinear strain paths on the FLC is addressed by both experimental measurements and numerical simulations. For this purpose, a miniature testing device was used that allows evaluation of the influence of strain path changes on the limit strain on samples at 0 degrees, 45 degrees and 90 degrees with respect to the sheet rolling direction cut from non-standard large samples previously subjected to a prestrain along the RD up to an early deformation of similar to 0.12. Numerical simulations were carried out using the well-known Marciniak and Kuczynski (MK) theory in conjunction with the viscoplastic self-consistent (VPSC) crystal plasticity model. In order to account for the grain fragmentation process due to the continuous dynamic recrystallization (CDRX) mechanism, an ad hoc short-range interaction effect (SRE) model was included in the simulations. Additionally, the measured and simulated texture evolution of Zn-Cu-Ti alloy sheets at the different stages of the deformations were shown. The capacity of the MK-VPSC-SRE model was validated, and the limitations to simulating the texture development, flow stress and forming limit curves, including a non-proportional strain path, were discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available