4.5 Article

Flexural Behavior of Low Calcium Fly Ash Based Geopolymer Reinforced Concrete Beam

Publisher

SPRINGER
DOI: 10.1186/s40069-022-00531-x

Keywords

geopolymer concrete; sodium hydroxide; sodium silicate; steam curing; crack propagation; crack width

Ask authors/readers for more resources

This study examines the strength of low calcium fly ash geopolymer as an alternative material in cement-based industries and highlights its eco-friendly nature.
Pioneering studies have been conducted on alternative cementitious material in the manufacturing of conventional concrete to reduce carbon emission and improve the overall efficacy. However, there are limited studies on eco-friendly materials with low calcium fly ash. This study aims to examine the strength fly ash geopolymer concrete and reduce carbon emission. In this investigation, flexural test is done for conventional and geopolymer concrete (GPC) beam samples after the fulfillment of rest period and 24 h steam curing at 60 degrees C. The experimental results prove that the initial characteristics of both specimens are almost similar. When GPC specimens reached the service, yield, and failure stages, the load carrying capacity, deflection increased up to 21.5 and 8.75%, respectively and better load bearing capacity, moment resistance, and crack propagation were observed more than in conventional cement. Fresh property test results indicated the achievement of standard workability without the addition of any admixture. Our study show that low calcium based geopolymer can be used as an efficient material for the alternate of cement in cement-based industries with eco-friendly nature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available