4.6 Article

Capsaicin suppresses hepatocarcinogenesis by inhibiting the stemness of hepatic progenitor cells via SIRT1/SOX2 signaling pathway

Journal

CANCER MEDICINE
Volume 11, Issue 22, Pages 4283-4296

Publisher

WILEY
DOI: 10.1002/cam4.4777

Keywords

capsaicin; hepatic progenitor cells; hepatocellular carcinoma; SIRT1; SOX2

Categories

Funding

  1. Natural Science Foundation of Hunan Province [2020JJ5998, 2017JJ4070]

Ask authors/readers for more resources

This study demonstrates that capsaicin can suppress hepatocarcinogenesis by inhibiting the stemness of HPCs via the SIRT1/SOX2 signaling pathway. Therefore, it may be a promising therapeutic candidate for liver cancer.
Background & Aims Capsaicin, a functional component of chili pepper, possesses anti-inflammatory, analgesic, and anti-cancer properties. This study aimed to determine the property of capsaicin against hepatocarcinogenesis in vivo and investigate the role of the SIRT1/SOX2 pathway in the mode of action of capsaicin in hepatic progenitor cells (HPCs), which is related to hepatocarcinogenesis. Materials & Methods We prepared a diethylnitrosamine-induced liver cancer model in rats to examine hepatocarcinogenesis, and delivered liposomal capsaicin through the subcutaneous transposition of the spleen to the liver. Liver sections from rats and hepatocarcinoma patients were stained for the markers of HPCs or SIRT1/SOX2 signaling. SIRT1/SOX2 signalling expression was measured using immunoprecipitation and western blot. Results We found that capsaicin significantly inhibited hepatocarcinogenesis. Notably, capsaicin inhibited HPCs activation in vivo but did not induce apoptosis in the normal hepatic progenitor cell line in rats in vitro. This suggests that capsaicin suppresses hepatocarcinogenesis by inhibiting the stemness of HPCs. Moreover, capsaicin can induce this inhibition by reducing the stability of SOX2. SIRT1 is overexpressed in liver cancer and acts as a tumor promoter via SOX2 deacetylation. Using immunoprecipitation, we identified direct binding between SIRT1 and SOX2. The capsaicin treatment resulted in SIRT1 downregulation which reduced deacetylation, and increased nuclear export as well as subsequent ubiquitous degradation of SOX2. Conclusions Altogether, we report that capsaicin suppresses hepatocarcinogenesis by inhibiting the stemness of HPCs via SIRT1/SOX2 signaling. It may serve as a promising therapeutic candidate for liver cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available