4.6 Article

Cancer carrier screening in the general population using whole-genome sequencing

Journal

CANCER MEDICINE
Volume 12, Issue 2, Pages 1972-1983

Publisher

WILEY
DOI: 10.1002/cam4.5034

Keywords

GJB2; variant analysis; whole-genome sequencing

Categories

Ask authors/readers for more resources

This study conducted whole-genome sequencing to explore germline mutations in cancer-related genes and found a high incidence of familial cancer in the Taiwanese population. The study also proposed a subgrouping method to study the relevance of a gene or variant to cancer.
Background Cancer is a major cause of death, and its early identification and intervention have potential for clinical actionability and benefits for human health. The studies using whole-genome sequencing (WGS) and large samples analysis of cancer-related genes have been rarely done. Methods We performed WGS to explore germline mutations in coding and non-coding areas of cancer-related genes and non-coding driver genes and regulatory areas. Structural variants (SVs) was also analyzed. We used several tools and a subgrouping method to analyze the variants in 1491 healthy participants. Moreover, 275 cancer-related genes sequencing was carried out in 125 cancer patients. Results The incidence of familial cancer in the Taiwanese general population is 8.79% (131/1491). Cancer carrier rate of cancer-related genes is about 7.04% (105/1491) for pathogenic/likely pathogenic variants (P/LP) on ClinVar database only, and 28.24% (421/1491) for P/LP and loss of function variants. The carrier frequencies of cancer-related genes P/LP on ClinVar database were as follows: 8.40% (11/131), 7.11% (28/394), and 6.83% (66/966) in FC, 1MC, and nMC, respectively. The SVs and non-coding driver gene variants are uncommon. There are 1.54% (23/1491) of actionable cancer genes in American College of Medical Genetics and Genomics (ACMG), and the germline mutation rate of 275 cancer-related genes is 7.2% (9/125) in cancer patients including 4.0% (5/125) of actionable cancer genes in ACMG. After analyzing the frequencies of P/LP variants on GJB2 and SLC25A13 genes, we suggest that these two genes may not be cancer-related genes and need be re-evaluated. Conclusions WGS analysis can completely detect germline mutations in cancer carriers. This study use subgrouping approach for samples provides a strategy to study whether a gene or variant is a cancer-related gene or variant in the future studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available