4.6 Article

Excitation of Hybrid Waveguide-Bloch Surface States with Bi2Se3 Plasmonic Material in the Near-Infrared Range

Journal

MICROMACHINES
Volume 13, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/mi13071020

Keywords

Bloch surface waves; Bi2Se3; distributed Bragg reflector

Funding

  1. Natural Science Foundation of the Jiangsu Province [BK20191396]

Ask authors/readers for more resources

This paper demonstrates the generation of Bloch surface waves (BSWs) using a composite structure consisting of a coupling prism, distributed Bragg reflector (DBR) and cavity layer with Bi2Se3. The design allows for direct manipulation of the BSWs through the confinement of surface waves and the coupling between the plasmonic material (Bi2Se3) and DBR. The study shows sharp resonances associated with BSWs in the spectral domain.
Bloch surface waves (BSWs) with Bi2Se3 in a composite structure consisting of a coupling prism, distributed Bragg reflector (DBR) and cavity layer have been demonstrated. The design relies on the confinement of surface waves that originates from the coupling between the defective layer of plasmonic material (Bi2Se3) and DBR. The presence of the cavity layer modifies the local effective refractive index, enabling direct manipulation of the BSWs. The transfer matrix method (TMM) is used to evaluate the reflectance and absorptance responses in the spectral domain for various angles of incidence, demonstrating the presence of sharp resonances associated with the BSW. With an optimal thickness of DBR bilayers, the energy of an evanescent wave can be transferred into the periodic stack resulting in the excitation of waveguide modes (WGMs). It is believed that the proposed design possesses the advantage in terms of easy fabrication to develop integrated photonic systems, especially for biological and chemical sensing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available