4.7 Article

Transcriptome of Endophyte-Positive and Endophyte-Free Tall Fescue Under Field Stresses

Journal

FRONTIERS IN PLANT SCIENCE
Volume 13, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2022.803400

Keywords

abiotic stress; cold; endophyte; RNA-seq; tall fescue; transcriptome

Categories

Ask authors/readers for more resources

This study identified differentially expressed genes in tall fescue under different temperatures through RNA-seq analysis. The results showed that there were fewer differentially expressed genes in the morning freezing conditions and more in the evening cold conditions. Additionally, the study found that the cold tolerance of tall fescue might be related to some orthologous genes of rice.
Tall fescue is one of the primary sources of forage for livestock. It grows well in the marginal soils of the temperate zones. It hosts a fungal endophyte (Epichloe coenophiala), which helps the plants to tolerate abiotic and biotic stresses. The genomic and transcriptomic resources of tall fescue are very limited, due to a complex genetic background and outbreeding modes of pollination. The aim of this study was to identify differentially expressed genes (DEGs) in two tissues (pseudostem and leaf blade) between novel endophyte positive (E+) and endophyte-free (E-) Texoma MaxQ II tall fescue genotypes. Samples were collected at three diurnal time points: morning (7:40-9:00 am), afternoon (1:15-2:15 pm), and evening (4:45-5:45 pm) in the field environment. By exploring the transcriptional landscape via RNA-seq, for the first time, we generated 226,054 and 224,376 transcripts from E+ and E- tall fescue, respectively through de novo assembly. The upregulated transcripts were detected fewer than the downregulated ones in both tissues (S: 803 up and 878 down; L: 783 up and 846 down) under the freezing temperatures (-3.0-0.5 degrees C) in the morning. Gene Ontology enrichment analysis identified 3 out of top 10 significant GO terms only in the morning samples. Metabolic pathway and biosynthesis of secondary metabolite genes showed lowest number of DEGs under morning freezing stress and highest number in evening cold condition. The 1,085 DEGs were only expressed under morning stress condition and, more importantly, the eight candidate orthologous genes of rice identified under morning freezing temperatures, including orthologs of rice phytochrome A, phytochrome C, and ethylene receptor genes, might be the possible route underlying cold tolerance in tall fescue.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available