4.7 Article

Community Structure of Phyllosphere Bacteria in Different Cultivars of Fingered Citron (Citrus medica 'Fingered') and Their Correlations With Fragrance

Journal

FRONTIERS IN PLANT SCIENCE
Volume 13, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2022.936252

Keywords

phyllosphere bacteria; fingered citron; varieties; high-throughput sequencing; volatile organic compounds (VOCs)

Categories

Funding

  1. Jinhua Biological Seed Industry and Modern AgriculturalMachinery Laboratory, Quality Evaluation and High Value Development and Utilization of Jinhua Bergamot [2021-4]

Ask authors/readers for more resources

This study provides a detailed insight into the relationship between bacteria and volatile organic compounds (VOCs) in fingered citron, highlighting the complexity of bacterial and metabolic interactions.
In recent years, plant metabolomics and microbiome studies have suggested that the synthesis and secretion of plant secondary metabolites are affected by microbial-host symbiotic interactions. In this study, six varieties of fingered citron (Citrus medica 'Fingered') are sampled to study their phyllosphere bacterial communities and volatile organic compounds (VOCs). High-throughput sequencing is used to sequence the V5-V7 region of the 16S rRNA of the fingered citron phyllosphere bacteria, and the results showed that Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were the dominant bacterial phylum in the phyllosphere of fingered citron. There were significant differences in the phyllosphere bacteria community between XiuZhen and the remaining five varieties. The relative abundance of Actinomycetospora was highest in XiuZhen, and Halomonas, Methylobacterium, Nocardioides, and Pseudokineococcus were also dominant. Among the remaining varieties, Halomonas was the genus with the highest relative abundance, while the relative abundances of all the other genera were low. Headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) were used to analyze and identify the aroma compounds of six different fingered citron, and a total of 76 aroma compounds were detected in six varieties. Pinene, geraniol, and linalool were found to be the primary VOCs that affect the aroma of fingered citron based on relative odor activity value. The correlation analysis showed 55 positive and 60 negative correlations between the phyllosphere bacterial flora and aroma compounds of fingered citron. The top 10 genera in the relative abundance were all significantly associated with aroma compounds. This study provides deep insight into the relation between bacteria and VOCs of fingered citron, and this may better explain the complexity of the analysis of bacterial and metabolic interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available