4.6 Article

Arginine Catabolism and Polyamine Biosynthesis Pathway Disparities Within Francisella tularensis Subpopulations

Journal

FRONTIERS IN MICROBIOLOGY
Volume 13, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2022.890856

Keywords

Francisella tularensis; tularemia; metabolism; amino acid metabolism; polyamine biosynthesis

Categories

Ask authors/readers for more resources

Francisella tularensis, a highly infectious zoonotic pathogen causing a deadly disease, exhibits major disparities in arginine catabolism and subsequent polyamine biosynthesis among its subpopulations, leading to differences in pathogenicity.
Francisella tularensis is a highly infectious zoonotic pathogen with as few as 10 organisms causing tularemia, a disease that is fatal if untreated. Although F. tularensis subspecies tularensis (type A) and subspecies holarctica (type B) share over 99.5% average nucleotide identity, notable differences exist in genomic organization and pathogenicity. The type A clade has been further divided into subtypes A.I and A.II, with A.I strains being recognized as some of the most virulent bacterial pathogens known. In this study, we report on major disparities that exist between the F. tularensis subpopulations in arginine catabolism and subsequent polyamine biosynthesis. The genes involved in these pathways include the speHEA and aguAB operons, along with metK. In the hypervirulent F. tularensis A.I clade, such as the A.I prototype strain SCHU S4, these genes were found to be intact and highly transcribed. In contrast, both subtype A.II and type B strains have a truncated speA gene, while the type B clade also has a disrupted aguA and truncated aguB. Ablation of the chromosomal speE gene that encodes a spermidine synthase reduced subtype A.I SCHU S4 growth rate, whereas the growth rate of type B LVS was enhanced. These results demonstrate that spermine synthase SpeE promotes faster replication in the F. tularensis A.I clade, whereas type B strains do not rely on this enzyme for in vitro fitness. Our ongoing studies on amino acid and polyamine flux within hypervirulent A.I strains should provide a better understanding of the factors that contribute to F. tularensis pathogenicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available