4.4 Article

An Operative Electrostatic Slipping Mechanism along Macrocycle Flexibility Accelerates Guest Sliding during pseudo-Rotaxane Formation

Journal

CHEMISTRYOPEN
Volume 11, Issue 6, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/open.202200112

Keywords

supramolecular chemistry; host-guest systems; kinetics; self-assembly; molecular recognition

Funding

  1. Conacyt [255979, 245140]
  2. SEP-Cinvestav Fund [260]

Ask authors/readers for more resources

This research introduces the process of forming pseudo-rotaxane using an electrostatically assisted sliding method, explores the effect of different macrocyclic conformational flexibility on sliding rate, and demonstrates that larger cyclic molecules can be slid through by combining different factors.
A pseudo-rotaxane is a host-guest complex composed of a linear molecule encircled by a macrocyclic ring. These complexes can be assembled by sliding the host over the guest terminal groups. If there is a close match between the molecular volume of the flanking groups on the guest and the cavity size of the macrocycle, the slipping might occur slowly or even become completely hindered. We have previously shown that it is possible to overcome the restraints imposed by steric effects on the sliding process by integrating electrostatic attractive interactions during the slipping step. In this work, we extend our electrostatically assisted slipping approach (EASA) to a new host-guest system featuring a flexible macrocyclic ring and a series of asymmetric guests containing a cyclic tertiary ammonium group. Compelling evidence for pseudo-rotaxane formation is presented, along with thermodynamic and kinetic data. Experimental results suggests that the higher conformational flexibility of 24-crown-8 significantly increases the sliding rate, compared with the more rigid dibenzo-24-crown-8, without affecting complex stability. Furthermore, by combining the EASA and macrocycle flexibility, we were capable to slip a large eight-membered cyclic group across the 24-crown-8 annulus, setting a new limit on the ring molecular size that can pass through a 24-membered crown ether.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available