4.8 Article

Therapeutic Targeting of the Warburg Effect in Pancreatic Cancer Relies on an Absence of p53 Function

Journal

CANCER RESEARCH
Volume 75, Issue 16, Pages 3355-3364

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-15-0108

Keywords

-

Categories

Funding

  1. Stand Up To Cancer Dream Team Translational Research Grant [SU2C-AACR DT0509]
  2. Wayne Huizinga Trust at Moffitt Cancer Center [R01 CA077575-14]
  3. [P30CA016520]
  4. [R01CA051497]
  5. [R01CA057341]
  6. [R01CA113669]
  7. [R01CA163591]
  8. Cancer Research UK [22311] Funding Source: researchfish

Ask authors/readers for more resources

The Warburg effect describes a peculiar metabolic feature of many solid tumors, namely their increased glucose uptake and high glycolytic rates, which allow cancer cells to accumulate building blocks for the biosynthesis of macromolecules. During aerobic glycolysis, pyruvate is preferentially metabolized to lactate by the enzyme lactate dehydrogenase-A (LDH-A), suggesting a possible vulnerability at this target for small-molecule inhibition in cancer cells. In this study, we used FX11, a small-molecule inhibitor of LDH-A, to investigate this possible vulnerability in a panel of 15 patient-derived mouse xenograft (PDX) models of pancreatic cancer. Unexpectedly, the p53 status of the PDX tumor determined the response to FX11. Tumors harboring wild-type (WT) TP53 were resistant to FX11. In contrast, tumors harboring mutant TP53 exhibited increased apoptosis, reduced proliferation indices, and attenuated tumor growth when exposed to FX11. [F-18]-FDG PET-CT scans revealed a relative increase in glucose uptake in mutant TP53 versus WT TP53 tumors, with FX11 administration down-regulating metabolic activity only in mutant TP53 tumors. Through a noninvasive quantitative assessment of lactate production, as determined by C-13 magnetic resonance spectroscopy (MRS) of hyperpolarized pyruvate, we confirmed that FX11 administration inhibited pyruvate-to-lactate conversion only in mutant TP53 tumors, a feature associated with reduced expression of the TP53 target gene TIGAR, which is known to regulate glycolysis. Taken together, our findings highlight p53 status in pancreatic cancer as a biomarker to predict sensitivity to LDH-A inhibition, with regard to both real-time noninvasive imaging by C-13 MRS as well as therapeutic response. 64. (C) 2015 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available