4.6 Article

Sulfonated Castor Oil as an Efficient Biosurfactant for Improving Methane Storage in Clathrate Hydrates

Journal

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
Volume 10, Issue 30, Pages 9921-9932

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.2c02329

Keywords

environmental effects; gas storage; methane hydrate; kinetic hydrate promoter; sulfonated castor oil; foam formation; eco-friendly reagents

Funding

  1. Ministry of Science and Higher Education of the Russian Federation [075-15-2022-299]

Ask authors/readers for more resources

This study developed an eco-friendly biosurfactant using castor oil, which effectively promoted the formation rate of methane hydrates and showed better safety and reduced foaming properties.
High toxicity and huge foaming are two severe challenges for gas storage strategies based on promoting the gas hydrate formation using surfactants. The present study used castor oil as an eco-friendly resource to develop novel biosurfactants for methane storage. Transmission and scanning electron microscopy, dynamic light scattering, and interfacial tension measurements revealed the surfactant properties of sulfonated castor oil (SCO). In addition, a high-pressure autoclave and a microdifferential scanning calorimeter test unveiled SCO as an effective kinetic hydrate promoter. The results showed that SCO significantly enhanced the rate of methane hydrate formation. A maximum of 76% water-to hydrate conversion was observed in 0.1 wt % SCO solution under stirring conditions. Pure water, 0.1 wt % SCO, and 0.1 wt % sodium dodecyl sulfate (SDS) solutions allowed 50% conversion to be achieved for 329, 39, and 27 min, respectively. This made the castor oil-based reagent as effective as the well-known kinetic hydrate promoter SDS. Furthermore, the SCO solution's foam ratio and stability were 8.25 and 2.75 times lower than those of SDS. Additionally, SCO showed a more favorable safety profile for humans and the environment as it is toxic to animals in higher concentrations than SDS according to in vivo studies. In addition, a combination of high-pressure DSC, low-temperature powder Xray diffractometry, and visual analysis of hydrate samples depending on the temperature mode, promoter type, and its concentration revealed that SCO and SDS enhanced hydrate growth by different mechanisms. The loose hydrate mass was squeezed out toward the gas phase in both cases. However, in the case of SDS, the hydrate traditionally climbed the cell walls while SCO seemed to change the wall wettability, which led to the transfer of water into the reaction zone along with the forming hydrate crystals and the domed shape of the hydrate. These findings provide reliable evidence to synthesize efficient and environmentally friendly reagents based on castor oil to improve methane storage in the clathrate hydrate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available