4.7 Article

Zearalenone-14-Glucoside Is Hydrolyzed to Zearalenone by β-Glucosidase in Extracellular Matrix to Exert Intracellular Toxicity in KGN Cells

Journal

TOXINS
Volume 14, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/toxins14070458

Keywords

zearalenone-14-glucoside; UHPLC-ESI-MS/MS; beta-glucosidase; metabolism; toxic release mechanism

Funding

  1. National Natural Science Foundation of China [81872999]
  2. CAMS Innovation Fund for Medical Sciences [2021-I2M-1-071]

Ask authors/readers for more resources

This study examines the cytotoxicity and metabolism of zearalenone-14-glucoside (Z14G) in human ovarian granulosa cells. The results suggest that Z14G cannot enter cells and exerts its cytotoxic effects through deglycosylation.
As one of the most important conjugated mycotoxins, zearalenone-14-glucoside (Z14G) has received widespread attention from researchers. Although the metabolism of Z14G in animals has been extensively studied, the intracellular toxicity and metabolic process of Z14G are not fully elucidated. In this study, the cytotoxicity of Z14G to human ovarian granulosa cells (KGN) and the metabolism of Z14G in KGN cells were determined. Furthermore, the experiments of co-administration of beta-glucosidase and pre-administered beta-glucosidase inhibitor (Conduritol B epoxide, CBE) were used to clarify the mechanism of Z14G toxicity release. Finally, the human colon adenocarcinoma cell (Caco-2) metabolism model was used to verify the toxicity release mechanism of Z14G. The results showed that the IC50 of Z14G for KGN cells was 420 mu M, and the relative hydrolysis rate of Z14G on ZEN was 35% (25% extracellular and 10% intracellular in KGN cells). The results indicated that Z14G cannot enter cells, and Z14G is only hydrolyzed extracellularly to its prototype zearalenone (ZEN) by beta-glucosidase which can exert toxic effects in cells. In conclusion, this study demonstrated the cytotoxicity of Z14G and clarified the toxicity release mechanism of Z14G. Different from previous findings, our results showed that Z14G cannot enter cells but exerts cytotoxicity through deglycosylation. This study promotes the formulation of a risk assessment and legislation limit for ZEN and its metabolites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available