4.7 Article

GEP Tree-Based Prediction Model for Interfacial Bond Strength of Externally Bonded FRP Laminates on Grooves with Concrete Prism

Journal

POLYMERS
Volume 14, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/polym14102016

Keywords

FRP; interfacial bond strength; axial stiffness; GEP modelling; artificial intelligence; sensitivity and parametric study

Funding

  1. Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [GRANT270]

Ask authors/readers for more resources

This study investigated the non-linear capability of artificial intelligence (AI)-based gene expression programming (GEP) modelling to develop a mathematical relationship for estimating the interfacial bond strength (IBS) of FRP laminates on a concrete prism with grooves. The developed model reflected close agreement between experimental and predicted results, indicating that the developed mathematical equation was reliable in estimating IBS based on the available properties of FRPs. The sensitivity and parametric analysis showed that the axial stiffness and width of FRP are the most influential parameters in contributing to IBS.
Reinforced concrete structures are subjected to frequent maintenance and repairs due to steel reinforcement corrosion. Fiber-reinforced polymer (FRP) laminates are widely used for retrofitting beams, columns, joints, and slabs. This study investigated the non-linear capability of artificial intelligence (AI)-based gene expression programming (GEP) modelling to develop a mathematical relationship for estimating the interfacial bond strength (IBS) of FRP laminates on a concrete prism with grooves. The model was based on five input parameters, namely axial stiffness (E(f)t(f)), width of FRP plate (b(f)), concrete compressive strength (f(c)'), width of groove (b(g)), and depth of the groove (h(g)), and IBS was considered the target variable. Ten trials were conducted based on varying genetic parameters, namely the number of chromosomes, head size, and number of genes. The performance of the models was evaluated using the correlation coefficient (R), mean absolute error (MAE), and root mean square error (RMSE). The genetic variation revealed that optimum performance was obtained for 30 chromosomes, 11 head sizes, and 4 genes. The values of R, MAE, and RMSE were observed as 0.967, 0.782 kN, and 1.049 kN for training and 0.961, 1.027 kN, and 1.354 kN. The developed model reflected close agreement between experimental and predicted results. This implies that the developed mathematical equation was reliable in estimating IBS based on the available properties of FRPs. The sensitivity and parametric analysis showed that the axial stiffness and width of FRP are the most influential parameters in contributing to IBS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available