4.7 Article

A novel SNF2 ATPase complex in Trypanosoma brucei with a role in H2A.Z-mediated chromatin remodelling

Journal

PLOS PATHOGENS
Volume 18, Issue 6, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1010514

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [JA 1013/4-1]

Ask authors/readers for more resources

This study identified and characterized a SWR1-like remodeller complex in T. brucei, which plays a key role in Pol II-dependent transcriptional regulation. Depletion of the ATPase subunit resulted in a reduction of H2A.Z incorporation at transcription start sites, accompanied by a decrease in steady-state mRNA levels and chromatin condensation.
A cascade of histone acetylation events with subsequent incorporation of a histone H2A variant plays an essential part in transcription regulation in various model organisms. A key player in this cascade is the chromatin remodelling complex SWR1, which replaces the canonical histone H2A with its variant H2A.Z. Transcriptional regulation of polycistronic transcription units in the unicellular parasite Trypanosoma brucei has been shown to be highly dependent on acetylation of H2A.Z, which is mediated by the histone-acetyltransferase HAT2. The chromatin remodelling complex which mediates H2A.Z incorporation is not known and an SWR1 orthologue in trypanosomes has not yet been reported. In this study, we identified and characterised an SWR1-like remodeller complex in T. brucei that is responsible for Pol II-dependent transcriptional regulation. Bioinformatic analysis of potential SNF2 DEAD/Box helicases, the key component of SWR1 complexes, identified a 1211 amino acids-long protein that exhibits key structural characteristics of the SWR1 subfamily. Systematic protein-protein interaction analysis revealed the existence of a novel complex exhibiting key features of an SWR1-like chromatin remodeller. RNAi-mediated depletion of the ATPase subunit of this complex resulted in a significant reduction of H2A.Z incorporation at transcription start sites and a subsequent decrease of steady-state mRNA levels. Furthermore, depletion of SWR1 and RNA-polymerase II (Pol II) caused massive chromatin condensation. The potential function of several proteins associated with the SWR1-like complex and with HAT2, the key factor of H2A.Z incorporation, is discussed. Author summaryTrypanosoma brucei is the causative agent of African trypanosomiasis (sleeping sickness) in humans and nagana in cattle. Its unusual genomic organisation featuring large polycistronic units requires a general mechanism of transcription initiation, because individual gene promoters are mostly absent. Despite the fact that the histone variant H2A.Z has previously been identified as a key player of transcription regulation, the complex responsible for correct H2A.Z incorporation at transcription start sites (TSS) remains elusive. In other eukaryotes, SWR1, a SNF2 ATPase-associated chromatin remodelling complex, is responsible for correct incorporation of this histone variant. This study identified a SWR1-like complex in T. brucei. Depletion of the SNF2 ATPase resulted in a reduction of H2A.Z incorporation at the TSS and decreased steady-state mRNA levels accompanied by chromatin condensation. In addition to the SWR1-like complex, we also identified a trypanosome-specific HAT2 complex that includes the histone acetyltransferases HAT2, a key player in the H2A.Z incorporation process. This complex has a trypanosome-specific composition that is different from the NuA4/TIP60 complex in Saccharomyces cerevisiae.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available