4.6 Article

A versatile new tool derived from a bacterial deubiquitylase to detect and purify ubiquitylated substrates and their interacting proteins

Journal

PLOS BIOLOGY
Volume 20, Issue 6, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pbio.3001501

Keywords

-

Funding

  1. National Institutes of Health [GM136325]
  2. Yale School of Medicine
  3. Office of the Director, National Institutes of Health [S10OD02365101A1, S10OD019967, S10OD018034]

Ask authors/readers for more resources

Protein ubiquitylation is a crucial posttranslational modification, and the OtUBD tool offers an efficient way to detect and purify ubiquitylated proteins. It enables selective purification of covalently ubiquitylated proteins or co-isolation of both ubiquitylated proteins and their interacting proteins.
Protein ubiquitylation is an important posttranslational modification affecting a wide range of cellular processes. Due to the low abundance of ubiquitylated species in biological samples, considerable effort has been spent on methods to purify and detect ubiquitylated proteins. We have developed and characterized a novel tool for ubiquitin detection and purification based on OtUBD, a high-affinity ubiquitin-binding domain (UBD) derived from an Orientia tsutsugamushi deubiquitylase (DUB). We demonstrate that OtUBD can be used to purify both monoubiquitylated and polyubiquitylated substrates from yeast and human tissue culture samples and compare their performance with existing methods. Importantly, we found conditions for either selective purification of covalently ubiquitylated proteins or co-isolation of both ubiquitylated proteins and their interacting proteins. As proof of principle for these newly developed methods, we profiled the ubiquitylome and ubiquitin-associated proteome of the budding yeast Saccharomyces cerevisiae. Combining OtUBD affinity purification with quantitative proteomics, we identified potential substrates for the E3 ligases Bre1 and Pib1. OtUBD provides a versatile, efficient, and economical tool for ubiquitin research with specific advantages over certain other methods, such as in efficiently detecting monoubiquitylation or ubiquitin linkages to noncanonical sites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available