4.7 Article

An Equivalent Substitute Strategy for Constructing 3D Ordered Porous Carbon Foams and Their Electromagnetic Attenuation Mechanism

Journal

NANO-MICRO LETTERS
Volume 14, Issue 1, Pages -

Publisher

SHANGHAI JIAO TONG UNIV PRESS
DOI: 10.1007/s40820-022-00900-x

Keywords

Porous carbon foam; Electromagnetic wave absorption; Adjustable pore structure; Polarization loss; Attenuation mechanism

Funding

  1. National Natural Science Foundation of China [52072196, 52002199, 52002200, 52102106]
  2. Major Basic Research Program of Natural Science Foundation of Shandong Province [ZR2020ZD09]
  3. Natural Science Foundation of Shandong Province [ZR2019BEM042, ZR2020QE063]
  4. Innovation and Technology Program of Shandong Province [2020KJA004]
  5. Taishan Scholars Program of Shandong Province [ts201511034]

Ask authors/readers for more resources

This study successfully constructed a novel ultra-light egg-derived porous carbon foam structure and investigated the influence of pore volume and specific surface area on its electromagnetic parameters and absorption properties. The results show that dielectric loss is the primary attenuation mode, with polarization loss dominating in certain frequency bands. Additionally, optimizing pore volume and specific surface area can achieve lower reflection loss and improve absorption properties.
Three-dimensional (3D) ordered porous carbon is generally believed to be a promising electromagnetic wave (EMW) absorbing material. However, most research works targeted performance improvement of 3D ordered porous carbon, and the specific attenuation mechanism is still ambiguous. Therefore, in this work, a novel ultra-light egg-derived porous carbon foam (EDCF) structure has been successfully constructed by a simple carbonization combined with the silica microsphere template-etching process. Based on an equivalent substitute strategy, the influence of pore volume and specific surface area on the electromagnetic parameters and EMW absorption properties of the EDCF products was confirmed respectively by adjusting the addition content and diameter of silica microspheres. As a primary attenuation mode, the dielectric loss originates from the comprehensive effect of conduction loss and polarization loss in S-band and C band, and the value is dominated by polarization loss in X band and Ku band, which is obviously greater than that of conduction loss. Furthermore, in all samples, the largest effective absorption bandwidth of EDCF-3 is 7.12 GHz under the thickness of 2.13 mm with the filling content of approximately 5 wt%, covering the whole Ku band. Mean while, the EDCF-7 sample with optimized pore volume and specific surface area achieves minimum reflection loss (RLmin) of- 58.08 dB at 16.86 GHz while the thickness is 1.27 mm. The outstanding research results not only provide a novel insight into enhancement of EMW absorption properties but also clarify the dominant dissipation mechanism for the porous carbon-based absorber from the perspective of objective experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available