4.5 Article

Excellent Formaldehyde Gas-Sensing Properties of Ruptured Nd-Doped In2O3 Porous Nanotubes

Journal

JOURNAL OF ELECTRONIC MATERIALS
Volume 46, Issue 1, Pages 363-369

Publisher

SPRINGER
DOI: 10.1007/s11664-016-4878-6

Keywords

Ruptured nanotubes; porous; Nd-doped In2O3; formaldehyde sensor

Funding

  1. Jilin Provincial Science and Technology Department [20140204027GX]

Ask authors/readers for more resources

The ruptured Nd-doped In2O3 porous nanotubes have been successfully synthesized by single-capillary electrospinning method. The morphologies of the as-prepared materials were characterized by scanning electron microscopy and transmission electron microscopy. It can be seen obviously that the surface of the nanotubes are distributed with cracks and pores, which formed such an open nanostructure. The crystal structures and components were determined by x-ray diffraction, energy-dispersive x-ray spectroscopy and x-ray photoelectron spectrometer. The gas-sensing properties of ruptured Nd-doped In2O3 porous nanotubes were studied and the results show the excellent performances of the as-obtained materials. The response of ruptured Nd-doped In2O3 porous nanotubes to 100 ppm of formaldehyde is 46.8 at the optimum temperature of 240 degrees C. The response and recovery times are 8 s and 22 s, respectively. Furthermore, the lowest detection limit of formaldehyde is 100 ppb with the value of 2.4. In addition, the ruptured Nd-doped In2O3 porous nanotubes exhibit good selectivity to formaldehyde and long-term stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available