4.7 Article

Impact on capsule formation for three different types of implant surface tomography

Journal

SCIENTIFIC REPORTS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-17320-x

Keywords

-

Funding

  1. Hansbiomed Co., Ltd.

Ask authors/readers for more resources

This study investigated the formation and contraction of capsules after silicone breast implantation using three types of implants with different surface topographies. The results showed that the nanotexture surface implant reduced capsule formation, collagen fiber density, and fibrosis markers. Additionally, the nanotexture and smooth surface implants had increased movement.
Although capsular contracture remains one of the major problems following silicone breast implantation, the associated mechanism has yet to be determined. This study thus aimed to investigate capsule formation and capsular contracture using three types of implants with different surface topographies in vivo. Three types of implants (i.e., smooth, macrotexture, and nanotexture) with different surface topographies were inserted in a total of 48 Wistar rats. After 4 and 12 weeks, the samples were analyzed via histological, immunohistochemical, and Western blot examination. To identify implant movement, the degree to which implant position changed was measured. And the surface topography was characterized using scanning electron microscopy. Hematoxylin-eosin staining showed that the nanotexture type implant promoted significant decreases in capsule thickness at 12 weeks (P < 0.05), while Masson trichrome staining showed decreased collagen fiber density with the same implant type. Immunohistochemical and Western blot examination revealed reduced fibrosis markers (myofibroblast, and transforming growth factor beta-1) in the nanotexture surface implant. Meanwhile, implant location evaluation found that the nanotexture and smooth surface implants had significantly increased movement (P < 0.05). The nanotexture surface implant had been found to reduce capsule formation given that it minimizes the effects of factors related to foreign body reaction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available