4.7 Article

Impact of walking speed and motion adaptation on optokinetic nystagmus-like head movements in the blowfly Calliphora

Journal

SCIENTIFIC REPORTS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-15740-3

Keywords

-

Funding

  1. Erasmus internship program
  2. US Air Force Office of Scientific Research [FA8655-09-1-3083]
  3. European Office of Aerospace Research and Development
  4. HHMI Janelia Research Campus

Ask authors/readers for more resources

Flies control their gaze through head turns and flexibly adjust their gaze to compensate for visual motion using a mechanism similar to optokinetic nystagmus. This mechanism is less state-dependent compared to other neurons' response properties.
The optokinetic nystagmus is a gaze-stabilizing mechanism reducing motion blur by rapid eye rotations against the direction of visual motion, followed by slower syndirectional eye movements minimizing retinal slip speed. Flies control their gaze through head turns controlled by neck motor neurons receiving input directly, or via descending neurons, from well-characterized directional-selective interneurons sensitive to visual wide-field motion. Locomotion increases the gain and speed sensitivity of these interneurons, while visual motion adaptation in walking animals has the opposite effects. To find out whether flies perform an optokinetic nystagmus, and how it may be affected by locomotion and visual motion adaptation, we recorded head movements of blowflies on a trackball stimulated by progressive and rotational visual motion. Flies flexibly responded to rotational stimuli with optokinetic nystagmus-like head movements, independent of their locomotor state. The temporal frequency tuning of these movements, though matching that of the upstream directional-selective interneurons, was only mildly modulated by walking speed or visual motion adaptation. Our results suggest flies flexibly control their gaze to compensate for rotational wide-field motion by a mechanism similar to an optokinetic nystagmus. Surprisingly, the mechanism is less state-dependent than the response properties of directional-selective interneurons providing input to the neck motor system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available