4.7 Article

Single step calcium sulfate scale removal at high temperature using tetrapotassium ethylenediaminetetraacetate with potassium carbonate

Journal

SCIENTIFIC REPORTS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-14385-6

Keywords

-

Funding

  1. King Fahd University of Petroleum & Minerals (KFUPM)

Ask authors/readers for more resources

Calcium sulfate scale is a common problem in oil and gas wells and water injectors. This study successfully removed the scale using a single-step method with potassium carbonate and tetrapotassium ethylenediaminetetraacetate at high temperature. The parameters for optimal dissolution efficiency were identified, and the reaction product was found to be non-corrosive with high stability and minimal corrosion rates at high temperatures.
Calcium sulfate (CaSO4) scale has been identified as one of the most common scales contributing to several serious operating problems in oil and gas wells and water injectors. Removing this scale is considered an economically feasible process in most cases as it enhances the productivity of wells and prevents potential severe equipment damage. In this study, a single-step method utilizing potassium carbonate and tetrapotassium ethylenediaminetetraacetate (K4-EDTA) at high temperature (200 degrees F) has been used to remove CaSO4 scale. The CaSO4 scale was converted to calcium carbonate (CaCO3) and potassium sulfate (K2SO4) using a conversion agent, potassium carbonate (K2CO3), at a high temperature (200 degrees F) and under various pH conditions. Various parameters were investigated to obtain a dissolver composition at which the optimum dissolution efficiency is achieved including the effect of dissolver pH, soaking time, the concentration of K4-EDTA, the concentration of potassium carbonate (K2CO3), temperature impact and agitation effect. Fourier transform infrared, X-ray crystallography, ion chromatography, stability tests and corrosion tests were carried out to test the end product of the process and showcase the stability of the dissolver at high temperature conditions. A reaction product (K2SO4) was obtained in most of the tests with different quantities and was soluble in both water and HCl. It was observed that the dissolver solution was effective at low pH (7) and resulted in a negligible amount of reaction product with 3 wt% CaSO4 dissolution. The 10.5-pH dissolver was effective in most of the cases and provided highest dissolution efficiency. The reaction product has been characterized and showed it is not corrosive. Both 7-pH and 10.5-pH dissolvers showed high stability at high temperature and minimum corrosion rates. The single step dissolution process showed its effectiveness and could potentially save significant pumping time if implemented in operation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available