4.7 Article

Progressive crushing 40Ar/39Ar dating of a gold-bearing quartz vein from the Liaotun Carlin-type gold deposit, Guangxi, southern China

Journal

SCIENTIFIC REPORTS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-17061-x

Keywords

-

Funding

  1. Natural Science Foundation of China [41362006]
  2. Guangxi Natural Science Foundation Program [2020GXNSFAA297049]

Ask authors/readers for more resources

This study demonstrates the feasibility and potential of using progressive crushing 40Ar/39Ar dating to determine the mineralization age and decipher the fluid origins of Carlin-type gold deposits.
Carlin-type gold deposits are among the largest hydrothermal gold deposits in the world. However, direct dating the metallogenic age of these deposits is difficult, because not all deposits provide material suitable for conventional radiometric methods. Syn-mineralization stage quartz veins from these deposits usually contain abundant fluid inclusions, which allow fluid inclusion 40Ar/39Ar dating. In this study, progressive crushing 40Ar/39Ar dating has been performed on a gold-bearing quartz vein from the Liaotun Carlin-type gold deposit in northwestern Guangxi, China. Argon isotopes liberated from the later steps yielded an isochron age of 200.7 +/- 2.1 Ma. We infer that Ar-bearing gas was extracted from the primary fluid inclusions, and that the age of ca. 200.7 Ma reflects the timing of gold mineralization. The initial 40Ar/Ar-36 ratio corresponding to the isochron is 298.0 +/- 4.3, which is statistically indistinguishable from the value for air, indicating that the ore-forming fluids probably mainly derived from gravitational pressure flow in the basin of air-saturated water. Our preliminary study shows the feasibility and great potential of 40Ar/39Ar dating of gases from fluid inclusions by progressive crushing of quartz veins to date the mineralization age and decipher the fluid origins of Carlin-type gold deposits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available