4.6 Article

Mechanical, Electrical, and Thermal Characterization of Pure Copper Parts Manufactured via Material Extrusion Additive Manufacturing

Journal

MATERIALS
Volume 15, Issue 13, Pages -

Publisher

MDPI
DOI: 10.3390/ma15134644

Keywords

material extrusion additive manufacturing; copper; metal powder filament; sintering; mechanical characterization; electrical and thermal characterization

Funding

  1. Castilla-La Mancha Government (JCCM) [SBPLY/19/180501/000170]
  2. ERDF (European Regional Development Fund)
  3. University of Castilla-La Mancha [2020-GRIN-28943, 2021-GRIN-31096]

Ask authors/readers for more resources

Material Extrusion Additive Manufacturing (MEAM) is a novel technology used to produce complex components made of polymers, metals, and ceramics. This research focuses on the development of a material extrusion technique for producing high-density copper parts with superior mechanical, thermal, and electrical properties.
Material Extrusion Additive Manufacturing (MEAM) is a novel technology to produce polymeric, metallic, and ceramic complex components. Filaments composed of a high-volume content of metal powder and a suitable binder system are needed to obtain metallic parts. Thermal and energetic controversies do not affect MEAM technology, although common in other additive manufacturing (AM) techniques. High thermal conductivity and reflectivity of copper to high-energy beams are the most challenging properties. A material extrusion technique to produce high density and quality copper parts is deeply studied in this research. Characterization of the filament, printed parts, brown parts and final sintered parts is provided. The sintering stage is evaluated through density analysis of the sintered copper parts, as well as their dimensional accuracy after part shrinkage inherent to the sintering process. The mechanical behavior of sintered parts is assessed through tensile, hardness and impact toughness tests. In addition, the measured electrical and thermal conductivities are compared to those obtained by other AM technologies. High-density components, with 95% of relative density, were successfully manufactured using MEAM technology. Similar or even superior mechanical, thermal and electrical properties than those achieved by other 3D printing processes such as Electron Beam Melting, Selective Laser Melting and Binder Jetting were obtained.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available