4.2 Article

Higher intracranial pressure variability is associated with lower cerebrovascular resistance in aneurysmal subarachnoid hemorrhage

Journal

JOURNAL OF CLINICAL MONITORING AND COMPUTING
Volume 37, Issue 1, Pages 319-326

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10877-022-00894-2

Keywords

Aneurysmal subarachnoid hemorrhage; Cerebral blood flow; Cerebrovascular resistance; Intracranial pressure variability; Xenon-enhanced computed tomography

Categories

Ask authors/readers for more resources

Higher intracranial pressure variability (ICPV) is associated with lower cerebrovascular resistance (CVR) and higher cerebral blood flow (CBF), indicating a more compliant and active cerebral vessels in patients with aneurysmal subarachnoid hemorrhage (aSAH).
Higher intracranial pressure variability (ICPV) has been associated with a more favorable cerebral energy metabolism, lower rate of delayed ischemic neurologic deficits, and more favorable outcome in aneurysmal subarachnoid hemorrhage (aSAH). We have hypothesized that higher ICPV partly reflects more compliant and active cerebral vessels. In this study, the aim was to further test this by investigating if higher ICPV was associated with lower cerebrovascular resistance (CVR) and higher cerebral blood flow (CBF) after aSAH. In this observational study, 147 aSAH patients were included, all of whom had been treated in the Neurointensive Care (NIC) Unit, Uppsala, Sweden, 2012-2020. They were required to have had ICP monitoring and at least one xenon-enhanced computed tomography (Xe-CT) scan to study cortical CBF within the first 2 weeks post-ictus. CVR was defined as the cerebral perfusion pressure in association with the Xe-CT scan divided by the concurrent CBF. ICPV was defined over three intervals: subminute (ICPV-1m), 30-min (ICPV-30m), and 4 h (ICPV-4h). The first 14 days were divided into early (days 1-3) and vasospasm phase (days 4-14). In the vasospasm phase, but not in the early phase, higher ICPV-4h (beta = - 0.19, p < 0.05) was independently associated with a lower CVR in a multiple linear regression analysis and with a higher global cortical CBF (r = 0.19, p < 0.05) in a univariate analysis. ICPV-1m and ICPV-30m were not associated with CVR or CBF in any phase. This study corroborates the hypothesis that higher ICPV, at least in the 4-h interval, is favorable and may reflect more compliant and possibly more active cerebral vessels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available