4.8 Article

Direct force measurement of microscopic droplets pulled along soft surfaces

Journal

NATURE COMMUNICATIONS
Volume 13, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-31910-3

Keywords

-

Funding

  1. Natural Science and Engineering Research Council of Canada
  2. Vanier Canada Graduate Scholarship
  3. University of Twente-Max Planck Center for Complex Fluid Dynamics
  4. German research foundation(DFG) [KA4747/2-1]

Ask authors/readers for more resources

The dynamic changes of elastic deformation of soft substrates at a microscale and the decrease of force when the film thickness decreases were studied and explained. The relationship between dissipation intensity and film thickness was discovered.
Elastic deformation of soft substrates occurs upon wetting, yet it is challenging to follow its dynamics at a microscale. Khattak et al. show that the force required to pull a droplet along a soft surface decreases monotonically as the film thickness decreases and explain the phenomenon using a scaling analysis. When a droplet is placed on a soft surface, surface tension deforms the substrate, creating a capillary ridge. We study how the motion of the ridge dissipates energy in microscopic droplets. Using a micropipette based method, we are able to simultaneously image and measure forces on a microscopic droplet moving at a constant speed along a soft film supported on a rigid substrate. Changing the thickness of the thin film tunes the effective stiffness of the substrate. Thus we can control the ridge size without altering the surface chemistry. We find that the dissipation depends strongly on the film thickness, decreasing monotonically as effective stiffness increases. This monotonic trend is beyond the realm of small deformation theory, but can be explained with a simple scaling analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available