4.8 Article

A patatin-like phospholipase mediates Rickettsia parkeri escape from host membranes

Journal

NATURE COMMUNICATIONS
Volume 13, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-31351-y

Keywords

-

Funding

  1. NIH/NIAID [R01 AI109044]

Ask authors/readers for more resources

This study identified a phospholipase enzyme in Rickettsia bacteria that plays an important role in the invasion and spread of infection by helping the bacteria escape from host cell vacuoles, preventing targeting by autophagy, and promoting bacterial motility and spread to other cells.
Rickettsia species of the spotted fever group are arthropod-borne obligate intracellular bacteria that can cause mild to severe human disease. These bacteria invade host cells, replicate in the cell cytosol, and spread from cell to cell. To access the host cytosol and avoid immune detection, they escape membrane-bound vacuoles by expressing factors that disrupt host membranes. Here, we show that a patatin-like phospholipase A2 enzyme (Pat1) facilitates Rickettsia parkeri infection by promoting escape from host membranes and cell-cell spread. Pat1 is important for infection in a mouse model and, at the cellular level, is crucial for efficiently escaping from single and double membrane-bound vacuoles into the host cytosol, and for avoiding host galectins that mark damaged membranes. Pat1 is also important for avoiding host polyubiquitin, preventing recruitment of autophagy receptor p62, and promoting actin-based motility and cell-cell spread. Pathogenic Rickettsia species are arthropod-borne, obligate intracellular bacteria that invade host cells, replicate in the cell cytosol, and spread from cell to cell. Here, Borgo et al. identify a Rickettsia phospholipase enzyme that is important for infection by helping the bacteria escape from host cell vacuoles into the host cytosol, preventing targeting by autophagy, and promoting bacterial motility and spread to other cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available