4.8 Article

Electric-field control of nonlinear THz spintronic emitters

Journal

NATURE COMMUNICATIONS
Volume 13, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-31789-0

Keywords

-

Funding

  1. National Research Foundation, Singapore [NRF-CRP23-2019-0005]

Ask authors/readers for more resources

Energy-efficient spintronic technology holds tremendous potential for next-generation processors operating at terahertz frequencies. In this study, a nonlinear electric-field control of terahertz spin current-based emitters was demonstrated using a piezoelectric material. This breakthrough offers opportunities for the realization of tunable energy-efficient spintronic-photonic integrated platforms.
Energy-efficient spintronic technology holds tremendous potential for the design of next-generation processors to operate at terahertz frequencies. Femtosecond photoexcitation of spintronic materials generates sub-picosecond spin currents and emission of terahertz radiation with broad bandwidth. However, terahertz spintronic emitters lack an active material platform for electric-field control. Here, we demonstrate a nonlinear electric-field control of terahertz spin current-based emitters using a single crystal piezoelectric Pb(Mg1/3Nb2/3)O-3-PbTiO3 (PMN-PT) that endows artificial magnetoelectric coupling onto a spintronic terahertz emitter and provides 270% modulation of the terahertz field at remnant magnetization. The nonlinear electric-field control of the spins occurs due to the strain-induced change in magnetic energy of the ferromagnet thin-film. Results also reveal a robust and repeatable switching of the phase of the terahertz spin current. Electric-field control of terahertz spintronic emitters with multiferroics and strain engineering offers opportunities for the on-chip realization of tunable energy-efficient spintronic-photonic integrated platforms. Spintronic terahertz (THz) emitters are a class of magnetic heterostructure where femtosecond laser excitations generate THz radiation emission. While they have great potential, electric field control of spintronic emitter remains a challenge. Here, by combining a spintronic emitter with a piezoelectric substrate, Agarwal et al. demonstrate electric field control of THz emission through induced piezostrain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available