4.5 Article

SJPYT-195: A Designed Nuclear Receptor Degrader That Functions as a Molecular Glue Degrader of GSPT1

Journal

ACS MEDICINAL CHEMISTRY LETTERS
Volume 13, Issue 8, Pages 1311-1320

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsmedchemlett.2c00223

Keywords

PROTAC; molecular glue; pregnane X receptor; GSPT1; acute myeloid leukemia

Funding

  1. National Institute of General Medical Sciences of the National Institutes of Health [R35GM118041]
  2. ALSAC

Ask authors/readers for more resources

This study describes the discovery of a molecule, SJPYT-195, which can reduce the protein level of PXR by acting as a molecular glue degrader of GSPT1, a translation termination factor. The findings provide insights into the chemical determinants of drug-induced GSPT1 degradation and also present assays and cell models for the discovery of PXR degraders.
We previously reported a specific inverse agonist (SPA70) of the nuclear receptor pregnane X receptor (PXR). However, derivatization of SPA70 yielded only agonists and neutral antagonists, suggesting that inverse agonism of PXR is difficult to achieve. Therefore, we sought to design proteolysis targeting chimeras (PROTACs) aimed at inducing PXR degradation. Conjugation of a SPA70 derivative to ligands of the E3 substrate receptor cereblon (CRBN) resulted in one molecule, SJPYT-195, that reduced PXR protein level in an optimized degradation assay described here. Further analysis revealed that SJPYT-195 was a molecular glue degrader of the translation termination factor GSPT1 and that GSPT1 degradation resulted in subsequent reduction of PXR protein. GSPT1 has recently gained interest as an anticancer target, and our results give new insights into chemical determinants of drug-induced GSPT1 degradation. Additionally, we have developed assays and cell models for PXR degrader discovery that can be applied to additional protein targets.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available