4.8 Article

Connecting microbial, nutrient, physiochemical, and land use variables for the evaluation of water quality within mixed use watersheds

Journal

WATER RESEARCH
Volume 219, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2022.118526

Keywords

Microbial source tracking; Watershed; Land use; Nutrients; Fecal pollution; Streamflow

Funding

  1. Michigan Corn Growers Association
  2. Michigan State University

Ask authors/readers for more resources

The study investigates spatial and temporal trends in microbial contamination in watersheds, finding a significant correlation between the porcine marker and nitrogen and phosphorus species. Relationships were also identified between MST markers and other variables driven by spatial and temporal trends, as well as management practices.
As non-point sources of pollution begin to overtake point sources in watersheds, source identification and complicating variables such as rainfall are growing in importance. Microbial source tracking (MST) allows for identification of fecal contamination sources in watersheds; when combined with data on land use and cooccuring variables (e.g., nutrients, sediment runoff) MST can provide a basis for understanding how to effectively remediate water quality. To determine spatial and temporal trends in microbial contamination and correlations between MST and nutrients, water samples (n = 136) were collected between April 2017 and May of 2018 during eight sampling events from 17 sites in 5 mixed-use watersheds. These samples were analyzed for three MST markers (human - B. theta; bovine - CowM2; porcine - Pig2Bac) along with E. coli, nutrients (nitrogen and phosphorus species), and physiochemical paramaters. These water quality variables were then paired with data on land use, streamflow, precipitation and management practices (e.g., tile drainage, septic tank density, tillage practices) to determine if any significant relationships existed between the observed microbial contamination and these variables. The porcine marker was the only marker that was highly correlated (p value <0.05) with nitrogen and phosphorus species in multiple clustering schemes. Significant relationships were also identified between MST markers and variables that demonstrated temporal trends driven by precipitation and spatial trends driven by septic tanks and management practices (tillage and drainage) when spatial clustering was employed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available