4.5 Article

Oxygen Requirements for the Cambrian Explosion

Journal

JOURNAL OF EARTH SCIENCE
Volume 27, Issue 2, Pages 187-195

Publisher

CHINA UNIV GEOSCIENCES, WUHAN
DOI: 10.1007/s12583-016-0690-8

Keywords

oxygenation; Cambrian explosion; metazoan lineages; divergence; fossil first appearance

Funding

  1. National Basic Research Program of China [2013CB835002]
  2. National Natural Science Foundation of China [41272036]

Ask authors/readers for more resources

Hypoxic tolerance experiments may be helpful to constrain the oxygen requirement for animal evolution. Based on literature review, available data demonstrate that fishes are more sensitive to hypoxia than crustaceans and echinoderms, which in turn are more sensitive than annelids, whilst mollusks are the least sensitive. Mortalities occur where 02 concentrations are below 2.0 mg/L, equivalent to saturation with oxygen content about 25% PAL (present atmospheric level). Therefore, the minimal oxygen requirement for maintaining animal diversity since Cambrian is determined as 25% PAL. The traditional view is that a rise in atmospheric oxygen concentrations led to the oxygenation of the ocean, thus triggering the evolution of animals. Geological and geochemical studies suggest a constant increase of the oxygen level and a contraction of anoxic oceans during Ediacaran Cambrian transition when the world oceans experienced a rapid diversification of metazoan lineages. However, fossil first appearances of animal phyla are obviously asynchronous and episodic, showing a sequence as: basal metazoans>lophotrochozoans>ecdysozoans and deuterostomes. According to hitherto known data of fossil record and hypoxic sensitivity of animals, the appearance sequence of different animals is broadly consistent with their hypoxic sensitivity: animals like molluscs and annelids that are less sensitive to hypoxia appeared earlier, while animals like echinoderms and fishes that are more sensitive to hypoxia came later. Therefore, it is very likely that the appearance order of animals is corresponding to the increasing oxygen level and/or the contraction of anoxic oceans during Ediacaran Cambrian transition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available