4.4 Article

The Role of High-Permeability Inclusion on Solute Transport in a 3D-Printed Fractured Porous Medium: An LIF-PIV Integrated Study

Journal

TRANSPORT IN POROUS MEDIA
Volume 146, Issue 1-2, Pages 283-305

Publisher

SPRINGER
DOI: 10.1007/s11242-022-01827-y

Keywords

Temporal and spatial moments; Mixing metric; Laser-induced fluorescence (LIF); Particle image velocimetry (PIV); Fractured porous media; 3D printing

Ask authors/readers for more resources

This study quantifies the transport of solutes in a 3D-printed fractured porous medium with high-permeability inclusions. The results show that compared to a high-permeability matrix, a low-permeability matrix has a higher solute concentration peak, a higher solute velocity peak, a smaller dispersion coefficient peak, a lower mixing rate, and a smaller solute-occupied pore volume.
It is well-known that the presence of geometry heterogeneity in porous media enhances solute mass mixing due to fluid velocity heterogeneity. However, laboratory measurements are still sparse on characterization of the role of high-permeability inclusions on solute transport, in particularly concerning fractured porous media. In this study, the transport of solutes is quantified after a pulse-like injection of soluble fluorescent dye into a 3D-printed fractured porous medium with distinct high-permeability (H-k) inclusions. The solute concentration and the pore-scale fluid velocity are determined using laser-induced fluorescence and particle image velocimetry techniques. The migration of solute is delineated with its breakthrough curve (BC), temporal and spatial moments, and mixing metrics (including the scalar dissipation rate, the volumetric dilution index, and the flux-related dilution index) in different regions of the medium. With the same H-k inclusions, compared to a H-k matrix, the low-permeability (L-k) matrix displays a higher peak in its BC, less solute mass retention, a higher peak solute velocity, a smaller peak dispersion coefficient, a lower mixing rate, and a smaller pore volume being occupied by the solute. The flux-related dilution index clearly captures the striated solute plume tails following the streamlines along dead-end fractures and along the interface between the H-k and L-k matrices. We propose a normalization of the scalar dissipation rate and the volumetric dilution index with respect to the maximum regional total solute mass, which offers a generalized examination of solute mixing for an open region with a varying total solute mass. Our study presents insights into the interplay between the geometric features of the fractured porous medium and the solute transport behaviors at the pore scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available