4.6 Article

LncRNA-mediated effects of vitrification temperatures and cryoprotectant concentrations on bovine oocyte development following vitrification at the GV stage

Journal

THERIOGENOLOGY
Volume 186, Issue -, Pages 135-145

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.theriogenology.2022.03.028

Keywords

Bovine immature oocytes; Vitrification temperatures; Cryoprotective agent concentrations; Liquid helium; lncRNA expressions

Funding

  1. National Natural Science Foundation of China [31872354]
  2. Science & Technology Key Project of Henan Provincial Education Department in China [19B230004]

Ask authors/readers for more resources

The effects of different vitrification temperatures and cryoprotective agent concentrations on the viability and expressions of long non-coding RNA in bovine oocytes were evaluated. The study found that altering vitrification temperature and cryoprotective agent concentration can improve the blastocyst formation rate of immature oocytes and affect specific lncRNA expressions.
We evaluated the effects of different vitrification temperatures (VTs) and cryoprotective agent concentrations (CPAs) on the viability and expressions of long non-coding RNA (lncRNA) in bovine oocytes following vitrification at the germinal vesicle (GV) stage. Our findings provide a theoretical support for improvement of the cryopreservation technology of bovine immature oocytes (BIOs). Bovine cumulus oocyte complexes (COCs) were collected and randomized into five groups: fresh oocytes (control), oocytes vitrified in liquid helium (LHe; -269 degrees C) with 5.6 M CPAs (LHe 5.6 M), oocytes vitrified in LHe with 6.6 M CPAs (LHe 6.6 M), oocytes vitrified in liquid nitrogen (LN; -196 degrees C) with 5.6 M CPAs (LN 5.6 M), and oocytes vitrified in LN with 6.6 M CPAs (LN 6.6 M). Of the four vitrification groups, the LHe 5.6 M group exhibited the highest blastocyst rate (13.22%), followed by the LHe 6.6 M group (10.19%) and LN 6.6 M group (9.77%), while the LN 5.6 M group had the lowest blastocyst rate (1.87%). Then, lncRNA expressions in the five groups were profiled. A total of 18,271 lncRNAs were identified, of which 2,158 were differentially expressed lncRNAs (DELs) in the vitrified groups, compared to the fresh group (P < 0.05; fold-change > 2). Co-location (cis) and co-expression (trans) prediction revealed 14 differentially expressed target genes (DETGs), which corresponded to 17 DELs. Based on grouping data and expression profiles of the DELs, we demonstrated that different VTs (-269 degrees C vs. -196 degrees C) can affect the expressions of MSTRG.12295.5, MSTRG.37123.1, MSTRG.37930.2, MSTRG.40464.9, MSTRG.8869.3 and MSTRG.26680.6. Expressions of these lncRNAs were affected by CPAs only in the condition of vitrification with LHe (-269 degrees C). Expressions of MSTRG.35129.6 were associated with exposures to both VTs and CPAs; while expressions of MSTRG.3578.3, MSTRG.40576.3, MSTRG.6723.5, MSTRG.32862.4, MSTRG.1184.4, MSTRG.33110.3, MSTRG.40454.2, MSTRG.41073.2, MSTRG.44732.4 and MSTRG.6729.3 might be related to vitrification. Co-expression analysis showed that MSTRG.12295.5, MSTRG.37930.2, MSTRG.40454.2, MSTRG.8869.3 and MSTRG.6723.5 expressions affect oocyte development after vitrification by regulating target gene expressions. Taken together, improvement of the developmental ability of BIOs after LHe vitrification maybe attributed to changes in expressions of some lncRNAs. Our findings elucidate on the molecular mechanisms underlying the development of BIOs under different VTs and CPAs. (c) 2022 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available