4.8 Article

Ultrafine Ruthenium Clusters Shell-Embedded Hollow Carbon Spheres as Nanoreactors for Channel Microenvironment-Modulated Furfural Tandem Hydrogenation

Journal

SMALL
Volume 18, Issue 32, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202201361

Keywords

biomass conversion; hollow nanostructures; metal catalysis; nanoreactors; nanostructure engineering; tandem hydrogenation

Funding

  1. National Natural Science Foundation of China [51876180, 22178258, 21975181, 51908400]
  2. Anhui Kemi Machinery Technology Co., Ltd.

Ask authors/readers for more resources

This study presents a metal pre-chelating assisted assembly strategy to synthesize Ru@Shell-HCSs nanoreactors with preferred catalytic microenvironments for efficient hydrogenation of biomass-derived furfural. The channel-embedding structure enhances the electron-deficient property of ultrafine ruthenium clusters, leading to an accelerated tandem hydrogenation progression for enhanced 2-methylfuran generation.
Rationally modulating the catalytic microenvironment is important for targeted induction of specific molecular behaviors to fulfill complicated catalytic purposes. Herein, a metal pre-chelating assisted assembly strategy is developed to facilely synthesize the hollow carbon spheres with ultrafine ruthenium clusters embedded in pore channels of the carbon shell (Ru@Shell-HCSs), which can be employed as nanoreactors with preferred electronic and geometric catalytic microenvironments for the efficient tandem hydrogenation of biomass-derived furfural toward 2-methylfuran. The channel-embedding structure is proved to confer the ultrafine ruthenium clusters with an electron-deficient property via a reinforced interfacial charge transfer mechanism, which prompts the hydrogenolysis of intermediate furfuryl alcohol during the tandem reaction, thus resulting in an enhanced 2-methylfuran generation. Meanwhile, lengthening the shell pore channel can offer reactant molecules with a prolonged diffusion path, and correspondingly a longer retention time in the channel, thereafter delivering an accelerated tandem hydrogenation progression. This paper aims to present a classic case that emphasizes the critical role of precisely controlling the catalytic microenvironment of the metal-loaded hollow nanoreactors in coping with the arduous challenges from multifunctional catalyst-driven complex tandem reactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available