4.6 Article

Camera-Derived Photoplethysmography (rPPG) and Speckle Plethysmography (rSPG): Comparing Reflective and Transmissive Mode at Various Integration Times Using LEDs and Lasers

Journal

SENSORS
Volume 22, Issue 16, Pages -

Publisher

MDPI
DOI: 10.3390/s22166059

Keywords

camera-based; speckle contrast analysis; optical monitoring; laser speckle; PPG; SPG

Ask authors/readers for more resources

This study compares the effects of integration time and light-source coherence on signal quality and waveform morphology for reflective and transmissive speckle plethysmography (SPG) and photoplethysmography (PPG). The results show that the signal quality of SPG and PPG varies under different light sources and coherence conditions.
Background: Although both speckle plethysmography (SPG) and photoplethysmography (PPG) examine pulsatile changes in the vasculature using opto-electronics, PPG has a long history, whereas SPG is relatively new and less explored. The aim of this study was to compare the effects of integration time and light-source coherence on signal quality and waveform morphology for reflective and transmissive rSPG and rPPG. Methods: (A) Using time-domain multiplexing, we illuminated 10 human index fingers with pulsed lasers versus LEDs (both at 639 and 850 nm), in transmissive versus reflective mode. A synchronized camera (Basler acA2000-340 km, 25 cm distance, 200 fps) captured and demultiplexed four video channels (50 fps/channel) in four stages defined by illumination mode. From all video channels, we derived rPPG and rSPG, and applied a signal quality index (SQI, scale: Good > 0.95; Medium 0.95-0.85; Low 0.85-0.8; Negligible < 0.8); (B) For transmission videos only, we additionally calculated the intensity threshold area (ITA), as the area of the imaging exceeding a certain intensity value and used linear regression analysis to understand unexpected similarities between rPPG and rSPG. Results: All mean SQI-values. Reflective mode: Laser-rSPG > 0.965, LED-rSPG < 0.78, rPPG < 0.845. Transmissive mode: 0.853-0.989 for rSPG and rPPG at all illumination settings. Coherent mode: Reflective rSPG > 0.951, reflective rPPG < 0.740, transmissive rSPG and rPPG 0.990-0.898. Incoherent mode: Reflective all <0.798 and transmissive all 0.92-0.987. Linear regressions revealed similar R-2 values of rPPG with rSPG (R-2 = 0.99) and ITA (R-2 = 0.98); Discussion: Laser-rSPG and LED-rPPG produced different waveforms in reflection, but not in transmission. We created the concept of ITA to investigate this behavior. Conclusions: Reflective Laser-SPG truly originated from coherence. Transmissive Laser-rSPG showed a loss of speckles, accompanied by waveform changes towards rPPG. Diffuse spatial intensity modulation polluted spatial-mode SPG.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available