4.7 Article

Zinc nanoparticles: Mode of action and efficacy against boscalid-resistant Alternaria alternata isolates

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 829, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.154638

Keywords

Carboxamides; Nanofungicides; Plant pathogens; ZnO-NPs; Synergism

Ask authors/readers for more resources

The antifungal potential of ZnO-NPs against Alternaria alternata isolates with reduced sensitivity to the succinate dehydrogenase inhibitor (SDHI) boscalid was evaluated. ZnO-NPs effectively inhibited mycelial growth, especially when combined with boscalid. The study found that zinc ion release and nanoparticle properties interfering with cellular ion homeostasis mechanisms may contribute to the fungitoxic effect of ZnO-NPs, and ROS production may also play a role.
The antifungal potential of ZnO-NPs against Alternaria alternata isolates with reduced sensitivity to the succinate dehydrogenase inhibitor (SDHI) boscalid, resulting from target site modifications, was evaluated in vitro and in vivo. ZnONPs could effectively inhibit mycelial growth in a dose-dependent way in both boscalid (BOSC) sensitive (BOSC-S) and resistant (BOSC-R) isolates. The fungitoxic effect of ZnO-NPs against the pathogen was significantly enhanced when combined with boscalid compared to the individual treatments in all phenotype cases (BOSC-S/R) both in vitro and in vivo. Fungitoxic effect of ZnO-NPs could be, at least partly, attributed to zinc ion release as indicated by the positive correlation between sensitivities to the nanoparticles and their ionic counterpart ZnSO4 and the alleviation of the ZnO-NPs fungitoxic action in the presence of the strong chelating agent EDTA. The superior effectiveness of ZnO-NPs against A. alternata, compared to ZnSO4, could be due to nanoparticle properties interfering with cellular ion homeostasis mechanisms. The observed additive action of the oxidative phosphorylation-uncoupler fluazinam (FM) against all phenotypes indicates a possible role of ATP-dependent ion efflux mechanism in the mode of action of ZnO-NPs. A potential role of ROS production in the fungitoxic action of ZnO-NPs was evident by the additive/synergistic action of salicylhydroxamate (SHAM), which blocks the alternative oxidase antioxidant action. Mixture of ZnO-NPs and boscalid, resulting in a capping effect for the nanoparticles and significantly reducing their mean size, probably accounted for the synergistic effect of the mixture against both sensitive and resistant A. alternata isolates. Summarizing, results indicated that ZnO-NPs can be effectively used against A. alternata both alone or in combination with boscalid, providing an effective tool for combating SDHI-resistance and reducing the environmental fingerprint of synthetic fungicides.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available