4.7 Article

Matching of corroded defects in onshore pipelines based on In-Line Inspections and Voronoi partitions

Journal

RELIABILITY ENGINEERING & SYSTEM SAFETY
Volume 223, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ress.2022.108520

Keywords

Corroded pipeline; New defects; Matching; Probability of detection; Voronoi cells

Funding

  1. National Department of Science, Technology and Innovation of Colombia [727]
  2. French Ministry for Europe and Foreign Affairs
  3. Campus France

Ask authors/readers for more resources

This paper investigates the matching problem in onshore pipeline in-line inspections and proposes an alternative method using Voronoi cells and iterative approach to determine the best affine transformation. Experimental results provide insights into the probability of detection and false alarm.
Onshore pipelines are usually subjected to a corrosion attack. Regular inspections known as In-Line inspections (ILI) are commonly used with magnetic (MFL) or ultrasonic (UT) tools to prevent any failure. New defects will appear between consecutive inspections due to the aggressiveness of the surroundings and the detection thresholds associated with the defects' depth. This work focuses on the matching problem between two inspections, aiming to identify the degradation increments and the position of new defects. Typically, it is linked to the well-known point matching problem in pattern recognition, where the objective is finding the best affine transformation between two sets of points in a plane. This work presents an alternative using Voronoi cells to filter possible matches and an iterative approach to determine the best affine transformation, considering the uncertainty in any direction. The approach was implemented for a real pipeline 45 km long and for synthetic corrosion defects, allowing us to identify possible matches easily. Based on the new and old defects, some insights about the probability of detection and false alarm are deduced. For this purpose, experimental probability and results from recognized exponential and log-logistic functions were considered.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available