4.8 Article

PTX3 structure determination using a hybrid cryoelectron microscopy and AlphaFold approach offers insights into ligand binding and complement activation

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2208144119

Keywords

Long pentraxin; complement; AlphaFold; cryoEM; COVID19

Funding

  1. European Research Council [759517]
  2. Netherlands Organization for Scientific Research [OCENW.KLEIN.291, VI.Vidi.193.014]
  3. European Research Council (ERC) [759517] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

This study presents a high-resolution structure of the prototypical long pentraxin, PTX3, and reveals a radically different quaternary structure compared to other pentraxins. The structure was obtained using cryo-electron microscopy (cryo-EM) and AlphaFold prediction. The resulting structure provides insights into ligand binding sites and can potentially inform the development of therapies for conditions such as COVID-19, cancer, and female infertility.
Pattern recognition molecules (PRMs) form an important part of innate immunity, where they facilitate the response to infections and damage by triggering processes such as inflammation. The pentraxin family of soluble PRMs comprises long and short pentraxins, with the former containing unique N-terminal regions unrelated to other proteins or each other. No complete high-resolution structural information exists about long pentraxins, unlike the short pentraxins, where there is an abundance of both X-ray and cryoelectron microscopy (cryo-EM)-derived structures. This study presents a high-resolution structure of the prototypical long pentraxin, PTX3. Cryo-EM yielded a 2.5-angstrom map of the C-terminal pentraxin domains that revealed a radically different quaternary structure compared to other pentraxins, comprising a glycosylated D4 symmetrical octameric complex stabilized by an extensive disulfide network. The cryo-EM map indicated a-helices that extended N terminal of the pentraxin domains that were not fully resolved. AlphaFold was used to predict the remaining N-terminal structure of the octameric PTX3 complex, revealing two long tetrameric coiled coils with two hinge regions, which was validated using classification of cryo-EM two-dimensional averages. The resulting hybrid cryo-EM/AlphaFold structure allowed mapping of ligand binding sites, such as C1q and fibroblast growth factor-2, as well as rationalization of previous biochemical data. Given the relevance of PTX3 in conditions ranging from COVID-19 prognosis, cancer progression, and female infertility, this structure could be used to inform the understanding and rational design of therapies for these disorders and processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available