4.8 Article

Quantifying the environmental limits to fire spread in grassy ecosystems

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2110364119

Keywords

fire model; percolation; infection model; fire thresholds; fuel moisture

Funding

  1. NSF [NSF-MSB 1802453]

Ask authors/readers for more resources

This study demonstrates that an infection model captures the spreading pattern of individual fires better than competing models. The proportion of burned landscape can be described by measurements of grass biomass, fuel moisture, and vapor pressure deficit. Averaging across variability results in quasi-linear patterns regionally.
Modeling fire spread as an infection process is intuitive: An ignition lights a patch of fuel, which infects its neighbor, and so on. Infection models produce nonlinear thresholds, whereby fire spreads only when fuel connectivity and infection probability are sufficiently high. These thresholds are fundamental both to managing fire and to theoretical models of fire spread, whereas applied fire models more often apply quasiempirical approaches. Here, we resolve this tension by quantifying thresholds in fire spread locally, using field data from individual fires (n = 1,131) in grassy ecosystems across a precipitation gradient (496 to 1,442 mm mean annual precipitation) and evaluating how these scaled regionally (across 533 sites) and across time (1989 to 2012 and 2016 to 2018) using data from Kruger National Park in South Africa. An infection model captured observed patterns in individual fire spread better than competing models. The proportion of the landscape that burned was well described by measurements of grass biomass, fuel moisture, and vapor pressure deficit. Regionally, averaging across variability resulted in quasi-linear patterns. Altogether, results suggest that models aiming to capture fire responses to global change should incorporate nonlinear fire spread thresholds but that linear approximations may sufficiently capture medium-term trends under a stationary climate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available