4.3 Article

Entropy generation on EMHD Darcy-Forchheimer flow of Carreau hybrid nanofluid over a permeable rotating disk with radiation and heat generation: Homotopy perturbation solution

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/09544089221116575

Keywords

EMHD; Carreau fluid; Darcy-Forchheimer; thermal radiation; heat generation; porous medium

Ask authors/readers for more resources

This article explores the entropy generation of the Carreau hybrid nanofluid in a permeable rotating disk, considering factors such as thermal radiation, heat generation, and viscous dissipation. The homotopy perturbation method is employed to obtain precise and dependable results. The study reveals that higher values of the Weissenberg number and thermal radiation parameter lead to increased entropy generation, while the porosity parameter has the opposite effect on the velocity profile.
The intention of this article is to explore the entropy generation of the Carreau hybrid nanofluid in a permeable rotating disk in the presence of thermal radiation, heat generation, and viscous dissipation. By applying the self-similarity variables, the partial differential equations are converted into ordinary differential equations and then the homotopy perturbation method is performed. Graphene oxide (Go) and Silver (Ag) are nanoparticles and kerosene oil as a base fluid is considered. Compared to the numerical technique (Runge-Kutta method), the homotopy perturbation method generates more precise and dependable results. The influence of sundry parameters is exhibited graphically for velocity, temperature, entropy generation, Bejan number, skin friction coefficient, and Nusselt number. The higher values of the Weissenberg number enhance the velocity profile and the opposite nature is observed in the porosity parameter. The entropy generation increases for larger values of the thermal radiation and electric field parameters. Carreau nanofluid expands under higher stress on the surface of the wall than Newtonian fluid. This type of problem would be used for electric devices and solar thermal systems. Moreover, the selected nanoparticles Graphene oxide and Silver play an important role in the biofunctionalization of protein, antibacterial, and anticancer therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available