4.5 Article

A new design of boring bar using TiNi3 alloy to reduce vibration in turning operations

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/09544054221104607

Keywords

Turning; boring bar; vibration; TiNi3 alloy; analytical model; optimization

Ask authors/readers for more resources

This paper investigates the effectiveness of using TiNi3 alloy as the turning tool holder material to reduce vibration in turning operations. Analytical and numerical studies show that TiNi3 alloy effectively decreases vibration amplitude and acceleration, leading to improved performance and reduced negative impact of vibrations on the turning process.
In turning operations, vibration is a significant problem that leads to an imperfect surface, cutting tool damage, and unstable production. Vibration affects not only the workpiece's surface quality, but also the cutting tool life, and ultimately the overall process cost. Since Shape Memory Alloys (SMA) has a very high vibration damping capacity, the effect of using TiNi3 alloy as the turning tool holder material is investigated in this paper. The tool holder vibrations are investigated analytically and numerically in both external and internal turning operations. The analytical study utilizes the Laplace Transformation Method to find the natural frequency and the beam's displacement as a function of time and the longitudinal axis. The numerical study is performed using transient and Modal Analysis using ANSYS software. A comparison of the analytical and numerical results shows that they were very close to each other. The numerical study shows that TiNi3 alloy decreases vibration amplitude and acceleration for external and internal turning operations. It is shown that the use of TiNi3 alloy in the turning cutting tools decrease the vibration acceleration amplitudes by 43.1% and 40.2% for internal and external turning operations, respectively. Additional improvement in the performance of the internal turning cutting tool is achieved by presenting a new model of the boring bar that depends on the integrating of TiNi3 alloy and carbide material. Optimization of five steps is made to obtain the optimal design of the presented model. The new model shows that the optimized boring bar decreases the vibration acceleration by 60.2% compared to the commercial boring bar. Therefore we strongly recommend it for manufacturing turning tool holders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available