4.6 Article

A simple scoring of beam walking performance after spinal cord injury in mice

Journal

PLOS ONE
Volume 17, Issue 8, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0272233

Keywords

-

Ask authors/readers for more resources

A novel scoring system using a single beam walking apparatus was established to evaluate the walking performances of SCI mice. The system uses binary judgments and observations of hindlimb position to rate the mice. The results showed that this scoring system accurately evaluates motor functions of SCI mice and is strongly correlated with the BMS score.
Precise evaluation of motor functions using simple and reproducible tests for mouse models of spinal cord injury (SCI) are required. Overground walking of SCI mice has been tested by Basso Mouse Scale for locomotion (BMS). In contrast, only a few works quantify walking performances of SCI mice on narrow beams, a different task. Here, we established a novel scoring system using a single beam walking apparatus for SCI mice. The scoring system uses binary judgments of values such as retention, moving forward and reaching the goal on a beam for rating. In addition, high score was given to SCI mouse when the mouse efficiently used hindlimbs for locomotion on the beam. A high rate of concordance of the score derived from positions of hindlimbs between two observers was obtained. Mice displayed the lowest total score on the beam immediately after the SCI, then the score gradually increased like time course of BMS score. Furthermore, the total scores reflected gradation of severity of SCI in 2 strains of mice. The beam walking score proved to be strongly correlated with that of BMS score, indicating that performances between overground walking and beam walking are partly correlated in SCI mice. Collectively, the novel scoring system offers an opportunity to easily evaluate motor performances of mice with SCI.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available