4.6 Article

High throughput SARS-CoV-2 variant analysis using molecular barcodes coupled with next generation sequencing

Journal

PLOS ONE
Volume 17, Issue 6, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0253404

Keywords

-

Ask authors/readers for more resources

In this study, the researchers proposed a solution for large-scale viral screening and specific variant analysis by integrating DNA barcoding technology, sample pooling, and Next Generation Sequencing (NGS) methods. The solution allows high throughput testing with high sensitivity and specificity, and enables variant analysis at a single nucleotide resolution.
The identification of SARS-CoV-2 variants across the globe and their implications on the outspread of the pandemic, infection potential and resistance to vaccination, requires modification of the current diagnostic methods to map out viral mutations rapidly and reliably. Here, we demonstrate that integrating DNA barcoding technology, sample pooling and Next Generation Sequencing (NGS) provide an applicable solution for large-population viral screening combined with specific variant analysis. Our solution allows high throughput testing by barcoding each sample, followed by pooling of test samples using a multi-step procedure. First, patient-specific barcodes are added to the primers used in a one-step RT-PCR reaction, amplifying three different viral genes and one human housekeeping gene (as internal control). Then, samples are pooled, purified and finally, the generated sequences are read using an Illumina NGS system to identify the positive samples with a sensitivity of 82.5% and a specificity of 97.3%. Using this solution, we were able to identify six known and one unknown SARS-CoV-2 variants in a screen of 960 samples out of which 258 (27%) were positive for the virus. Thus, our diagnostic solution integrates the benefits of large population and epidemiological screening together with sensitive and specific identification of positive samples including variant analysis at a single nucleotide resolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available