4.7 Article

Mapping Quantitative Trait Loci for Type II Fusarium Head Blight Resistance in Two Wheat Recombinant Inbred Line Populations Derived from Yangmai 4 and Yangmai 5

Journal

PLANT DISEASE
Volume -, Issue -, Pages -

Publisher

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/PDIS-06-22-1338-RE

Keywords

Fusarium head blight; KASP marker; QTL mapping; Triticum aestivum; wheat breeding

Categories

Ask authors/readers for more resources

The genetic basis of resistance to Fusarium head blight (FHB) in wheat was studied in two elite cultivars using quantitative trait loci (QTL) mapping. It was found that there is a common QTL with a large effect on FHB resistance in both cultivars, and a novel QTL was identified in one of the populations. These resistance alleles do not affect plant height or flowering dates, and have been verified to be effective in other cultivars.
Fusarium head blight (FHB) is a destructive wheat disease worldwide and significantly affects grain yield and quality in wheat. To understand the genetic basis underlying type II FHB resistance in two elite wheat cultivars-Yangmai 4 (YM4) and Yangmai 5 (YM5)-quantitative trait loci (QTL) mapping was conducted in two recombinant inbred line (RIL) populations derived from the crosses of YM4 and YM5 with susceptible cultivar Yanzhan 1 (YZ1), respectively. A survey with markers linked to Fhb1, Fhb2, Fhb4, and Fhb5 in landrace Wangshuibai indicated the nonexistence of these known FHB resistance genes or QTL in YM4, YM5, and YZ1. One overlapped resistance QTL was identified in both RIL populations (namely, QFhb.Y4.2D/QFhb.Y5.2D) with a large effect on FHB resistance. One novel resistance QTL (QFhb.Y4.5A) mapped on chromosome 5A was detected only in the YM4/YZ1 population. The resistance alleles of both QFhb.Y4.2D/QFhb.Y5.2D and QFhb.Y4.5A did not increase the plant height and did not significantly affect the heading date and flowering date. Kompetitive allele-specific PCR markers for QFhb.Y4.2D/QFhb.Y5.2D and QFhb.Y4.5A had been developed to verify in an additional set of 244 geographically diverse cultivars or lines. Pyramiding of the two resistance alleles decreased the percentage of symptomatic spikelets by 51.77% relative to the cultivars or lines without these two resistance alleles. QFhb.Y4.2D/QFhb.Y5.2D and QFhb.Y4.5A were shown to be useful alternatives in FHB resistance breeding programs. The results will facilitate marker-assisted selection for introgression of the favorable alleles for improving FHB resistance in breeding programs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available