4.2 Article

Generating novel pituitary datasets from open-source imaging data and deep volumetric segmentation

Journal

PITUITARY
Volume 25, Issue 6, Pages 842-853

Publisher

SPRINGER
DOI: 10.1007/s11102-022-01255-7

Keywords

Pituitary gland; Magnetic resonance imaging; Volumetric segmentation; Computer vision; Dataset generation

Funding

  1. Neurosurgery Research & Education Foundation

Ask authors/readers for more resources

This study constructed the first and largest dataset of pituitary imaging using existing MRI data and deep volumetric segmentation models to identify sellar and parasellar anatomy. The model generalized well across different patient populations and MRI scanner types.
Purpose The estimated incidence of pituitary adenomas in the general population is 10-30%, yet radiographic diagnosis remains a challenge. Diagnosis is complicated by the heterogeneity of radiographic features in both normal (e.g. complex anatomy, pregnancy) and pathologic states (e.g. primary endocrinopathy, hypophysitis). Clinical symptoms and laboratory testing are often equivocal, which can result in misdiagnosis or unnecessary specialist referrals. Computer vision models can aid in pituitary adenoma diagnosis; however, a major challenge to model development is the lack of dedicated pituitary imaging datasets. We hypothesized that deep volumetric segmentation models trained to extract the sellar and parasellar region from existing whole-brain MRI scans could be used to generate a novel dataset of pituitary imaging. Methods Six open-source whole-brain MRI datasets, created for research purposes, were included for model development. Deep learning-based volumetric segmentation models were trained using 318 manually annotated MRI scans from a single open-source MRI dataset. Out-of-distribution volumetric segmentation performance was then tested on 418 MRIs from five held-out research datasets. Results On our annotated images, agreement between manual and model volumetric segmentations was high. Dice scores (a measure of overlap) ranged 0.76-0.82 for both in-distribution and out-of-distribution model testing. In total, 6,755 MRIs from six data sources were included in the final generated pituitary dataset. Conclusions We present the first and largest dataset of pituitary imaging constructed using existing MRI data and deep volumetric segmentation models trained to identify sellar and parasellar anatomy. The model generalizes well across patient populations and MRI scanner types. We hope our pituitary dataset will be an integral part of future machine learning research on pituitary pathologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available