4.8 Article

Quantum Wheatstone Bridge

Journal

PHYSICAL REVIEW LETTERS
Volume 128, Issue 24, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.128.240401

Keywords

-

Funding

  1. Independent Research Fund Denmark DFF-FNU
  2. Sao Paulo Research Foundation (FAPESP) [2019/22685-1, 2021/10224-0]

Ask authors/readers for more resources

We propose a quantum Wheatstone bridge as a fully quantum analog to the classical version, which exploits quantum effects to enhance sensitivity to an unknown coupling. This can be used in fields such as sensing and metrology.
We propose a quantum Wheatstone bridge as a fully quantum analog to the classical version. The bridge is a few-body boundary-driven spin chain exploiting quantum effects to gain an enhanced sensitivity to an unknown coupling. The sensitivity is explained by a drop in population of an entangled Bell state due to destructive interference as the controllable coupling approaches the unknown coupling. A simple criterion for the destructive interference is found, and an approximate expression for the width of the drop is derived. The sensitivity to the unknown coupling is quantified using the quantum Fisher information, and we show that the state of the bridge can be measured indirectly through the spin current. Our results are robust toward calibration errors and generic in the sense that several of the current state-of-the-art quantum platforms could be used as a means of realization. The quantum Wheatstone bridge may thus find use in fields such as sensing and metrology using near-term quantum devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available