4.4 Article

Geographic and temporal morphological stasis in the latest Cretaceous ammonoid Discoscaphites iris from the US Gulf and Atlantic Coastal Plains

Journal

PALEOBIOLOGY
Volume 49, Issue 1, Pages 153-175

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/pab.2022.15

Keywords

-

Ask authors/readers for more resources

This study examines the temporal and spatial variation in the morphology of the ammonoid cephalopod Discoscaphites iris. The results suggest that there is no net accumulation of evolutionary change in morphology within this species. However, there may be limited population-scale ecophenotypic plasticity. The lack of directional changes in morphology before the K/Pg boundary supports a model of dynamic evolutionary stasis.
We examine temporal and spatial variation in morphology of the ammonoid cephalopod Discoscaphites iris using a large dataset from multiple localities in the Late Cretaceous (Maastrichtian) of the U.S. Gulf and Atlantic Coastal Plains, spanning a distance of 2000 km along the paleoshoreline. Our results suggest that the fossil record of D. iris is consistent with no within-species net accumulation of phyletic evolutionary change across morphological traits or the lifetime of this species. Correlations between some traits and paleoenvironmental conditions as well as changes in the coefficient of variation may support limited population-scale ecophenotypic plasticity; however, where stratigraphic data are available, no directional changes in morphology occur before the Cretaceous/Paleogene (K/Pg) boundary. This is consistent with models of dynamic evolutionary stasis. Combined with knowledge of life-history traits and paleoecology of scaphitid ammonoids, specifically a short planktonic phase after hatching followed by transition to a nektobenthic adult stage, these data suggest that scaphitids had significant potential for rapid morphological change in conjunction with limited dispersal capacity. It is therefore likely that evolutionary mode in the Scaphitidae (and potentially across the broader ammonoid clade) follows a model of cladogenesis wherein a dynamic morphological stasis is periodically interrupted by more substantial evolutionary change at speciation events. Finally, the lack of temporal changes in our data suggest that global environmental changes had a limited effect on the morphology of ammonoid faunas during the latest Cretaceous.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available